A. 系统数据库优化问题。如下:
实例讲解MYSQL数据库的查询优化技术 作者:佚名 文章来源:未知 点击数:2538 更新时间:2006-1-19 数据库系统是管理信息系统的核心,基于数据库的联机事务处理(OLTP)以及联机分析处理(OLAP)是银行、企业、政府等部门最为重要的计算机应用之一。从大多数系统的应用实例来看,查询操作在各种数据库操作中所占据的比重最大,而查询操作所基于的SELECT语句在SQL语句中又是代价最大的语句。举例来说,如果数据的量积累到一定的程度,比如一个银行的账户数据库表信息积累到上百万甚至上千万条记录,全表扫描一次往往需要数十分钟,甚至数小时。如果采用比全表扫描更好的查询策略,往往可以使查询时间降为几分钟,由此可见查询优化技术的重要性。笔者在应用项目的实施中发现,许多程序员在利用一些前端数据库开发工具(如PowerBuilder、Delphi等)开发数据库应用程序时,只注重用户界面的华丽,并不重视查询语句的效率问题,导致所开发出来的应用系统效率低下,资源浪费严重。因此,如何设计高效合理的查询语句就显得非常重要。本文以应用实例为基础,结合数据库理论,介绍查询优化技术在现实系统中的运用。分析问题许多程序员认为查询优化是DBMS(数据库管理系统)的任务,与程序员所编写的SQL语句关系不大,这是错误的。一个好的查询计划往往可以使程序性能提高数十倍。查询计划是用户所提交的SQL语句的集合,查询规划是经过优化处理之后所产生的语句集合。DBMS处理查询计划的过程是这样的:在做完查询语句的词法、语法检查之后,将语句提交给DBMS的查询优化器,优化器做完代数优化和存取路径的优化之后,由预编译模块对语句进行处理并生成查询规划,然后在合适的时间提交给系统处理执行,最后将执行结果返回给用户。在实际的数据库产品(如Oracle、Sybase等)的高版本中都是采用基于代价的优化方法,这种优化能根据从系统字典表所得到的信息来估计不同的查询规划的代价,然后选择一个较优的规划。虽然现在的数据库产品在查询优化方面已经做得越来越好,但由用户提交的SQL语句是系统优化的基础,很难设想一个原本糟糕的查询计划经过系统的优化之后会变得高效,因此用户所写语句的优劣至关重要。系统所做查询优化我们暂不讨论,下面重点说明改善用户查询计划的解决方案。解决问题下面以关系数据库系统Informix为例,介绍改善用户查询计划的方法。1.合理使用索引索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。●在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁操作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。2.避免或简化排序应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:●索引中不包括一个或几个待排序的列;●group by或order by子句中列的次序与索引的次序不一样;●排序的列来自不同的表。为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。3.消除对大型表行数据的顺序存取在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序操作:SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句:SELECT * FROM orders WHERE customer_num=104 AND order_num>1001UNIONSELECT * FROM orders WHERE order_num=1008 这样就能利用索引路径处理查询。 4.避免相关子查询一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。5.避免困难的正规表达式MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _” 即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。 另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3]>“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。 6.使用临时表加速查询把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序操作,而且在其他方面还能简化优化器的工作。例如:SELECT cust.name,rcvbles.balance,……other columns FROM cust,rcvbles WHERE cust.customer_id = rcvlbes.customer_id AND rcvblls.balance>0 AND cust.postcode>“98000” ORDER BY cust.name 如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序: SELECT cust.name,rcvbles.balance,……other columns FROM cust,rcvbles WHERE cust.customer_id = rcvlbes.customer_id AND rcvblls.balance>0 ORDER BY cust.name INTO TEMP cust_with_balance 然后以下面的方式在临时表中查询:SELECT * FROM cust_with_balance WHERE postcode>“98000” 临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。 7.用排序来取代非顺序存取非顺序磁盘存取是最慢的操作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。实例分析下面我们举一个制造公司的例子来说明如何进行查询优化。制造公司数据库中包括3个表,模式如下所示:1.part表 零件号零件描述其他列 (part_num)(part_desc)(other column) 102,032Seageat 30G disk…… 500,049Novel 10M network card…… …… 2.vendor表 厂商号厂商名其他列 (vendor _num)(vendor_name) (other column) 910,257Seageat Corp…… 523,045IBM Corp…… …… 3.parven表 零件号厂商号零件数量 (part_num)(vendor_num)(part_amount) 102,032910,2573,450,000 234,423321,0014,000,000 …… 下面的查询将在这些表上定期运行,并产生关于所有零件数量的报表: SELECT part_desc,vendor_name,part_amount FROM part,vendor,parven WHERE part.part_num=parven.part_num AND parven.vendor_num = vendor.vendor_num ORDER BY part.part_num 如果不建立索引,上述查询代码的开销将十分巨大。为此,我们在零件号和厂商号上建立索引。索引的建立避免了在嵌套中反复扫描。关于表与索引的统计信息如下: 表行尺寸行数量每页行数量数据页数量 (table)(row size)(Row count)(Rows/Pages)(Data Pages) part15010,00025400 Vendor1501,000 2540 Parven13 15,000300 50 索引键尺寸每页键数量页面数量 (Indexes)(Key Size)(Keys/Page)(Leaf Pages) part450020 Vendor45002 Parven825060 看起来是个相对简单的3表连接,但是其查询开销是很大的。通过查看系统表可以看到,在part_num上和vendor_num上有簇索引,因此索引是按照物理顺序存放的。parven表没有特定的存放次序。这些表的大小说明从缓冲页中非顺序存取的成功率很小。此语句的优化查询规划是:首先从part中顺序读取400页,然后再对parven表非顺序存取1万次,每次2页(一个索引页、一个数据页),总计2万个磁盘页,最后对vendor表非顺序存取1.5万次,合3万个磁盘页。可以看出在这个索引好的连接上花费的磁盘存取为5.04万次。实际上,我们可以通过使用临时表分3个步骤来提高查询效率: 1.从parven表中按vendor_num的次序读数据: SELECT part_num,vendor_num,price FROM parven ORDER BY vendor_num INTO temp pv_by_vn 这个语句顺序读parven(50页),写一个临时表(50页),并排序。假定排序的开销为200页,总共是300页。 2.把临时表和vendor表连接,把结果输出到一个临时表,并按part_num排序: SELECT pv_by_vn,* vendor.vendor_num FROM pv_by_vn,vendor WHERE pv_by_vn.vendor_num=vendor.vendor_num ORDER BY pv_by_vn.part_num INTO TMP pvvn_by_pn DROP TABLE pv_by_vn 这个查询读取pv_by_vn(50页),它通过索引存取vendor表1.5万次,但由于按vendor_num次序排列,实际上只是通过索引顺序地读vendor表(40+2=42页),输出的表每页约95行,共160页。写并存取这些页引发5*160=800次的读写,索引共读写892页。3.把输出和part连接得到最后的结果: SELECT pvvn_by_pn.*,part.part_descFROM pvvn_by_pn,part WHERE pvvn_by_pn.part_num=part.part_num DROP TABLE pvvn_by_pn 这样,查询顺序地读pvvn_by_pn(160页),通过索引读part表1.5万次,由于建有索引,所以实际上进行1772次磁盘读写,优化比例为30∶1。笔者在Informix DynamicSever上做同样的实验,发现在时间耗费上的优化比例为5∶1(如果增加数据量,比例可能会更大)。 小结20%的代码用去了80%的时间,这是程序设计中的一个着名定律,在数据库应用程序中也同样如此。我们的优化要抓住关键问题,对于数据库应用程序来说,重点在于SQL的执行效率。查询优化的重点环节是使得数据库服务器少从磁盘中读数据以及顺序读页而不是非顺序读页。
B. 数据库优化的概念
索引调整:前置条件,数据量庞大,只读查询频繁
语言的优化
C. 数据库如何优化
body{
line-height:200%;
}
如何优化MySQL数据库
当MySQL数据库邂逅优化,它有好几个意思,今天我们所指的是性能优化。
我们究竟该如何对MySQL数据库进行优化呢?下面我就从MySQL对硬件的选择、Mysql的安装、my.cnf的优化、MySQL如何进行架构设计及数据切分等方面来说明这个问题。
1.服务器物理硬件的优化
1)磁盘(I/O),MySQL每一秒钟都在进行大量、复杂的查询操作,对磁盘的读写量可想而知,所以推荐使用RAID1+0磁盘阵列,如果资金允许,可以选择固态硬盘做RAID1+0;
2)cpu对Mysql的影响也是不容忽视的,建议选择运算能力强悍的CPU。
2.MySQL应该采用编译安装的方式
MySQL数据库的线上环境安装,我建议采取编译安装,这样性能会较大的提升。
3.MySQL配置文件的优化
1)skip
-name
-resolve,禁止MySQL对外部连接进行DNS解析,使用这一选项可以消除MySQL进行DNS解析的时间;
2)back_log
=
384,back_log指出在MySQL暂时停止响应新请求之前,短时间内的多少个请求可以被存在堆栈中,对于Linux系统而言,推荐设置小于512的整数。
3)如果key_reads太大,则应该把my.cnf中key_buffer_size变大,保持key_reads/key_read_requests至少在1/100以上,越小越好。
4.MySQL上线后根据status状态进行适当优化
1)打开慢查询日志可能会对系统性能有一点点影响,如果你的MySQL是主-从结构,可以考虑打开其中一台从服务器的慢查询日志,这样既可以监控慢查询,对系统性能影响也会很小。
2)MySQL服务器过去的最大连接数是245,没有达到服务器连接数的上限256,应该不会出现1040错误。比较理想的设置是:Max_used_connections/max_connections
*
100%
=85%
5.MySQL数据库的可扩展架构方案
1)MySQL
cluster,其特点为可用性非常高,性能非常好,但它的维护非常复杂,存在部分Bug;
2)DRBD磁盘网络镜像方案,其特点为软件功能强大,数据可在底层块设备级别跨物理主机镜像,且可根据性能和可靠性要求配置不同级别的同步。
D. 数据库性能优化有哪些措施
1、调整数据结构的设计。这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。
2、调整应用程序结构设计。这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的Client/Server两层体系结构,还是使用Browser/Web/Database的三层体系结构。不同的应用程序体系结构要求的数据库资源是不同的。
3、调整数据库SQL语句。应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的性能。ORACLE公司推荐使用ORACLE语句优化器(Oracle Optimizer)和行锁管理器(row-level manager)来调整优化SQL语句。
4、调整服务器内存分配。内存分配是在信息系统运行过程中优化配置的,数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区、日志缓冲区和共享池的大小;还可以调整程序全局区(PGA区)的大小。需要注意的是,SGA区不是越大越好,SGA区过大会占用操作系统使用的内存而引起虚拟内存的页面交换,这样反而会降低系统。
5、调整硬盘I/O,这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。
6、调整操作系统参数,例如:运行在UNIX操作系统上的ORACLE数据库,可以调整UNIX数据缓冲池的大小,每个进程所能使用的内存大小等参数。
数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。
在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。数据库技术是管理信息系统、办公自动化系统、决策支持系统等各类信息系统的核心部分,是进行科学研究和决策管理的重要技术手段。
在经济管理的日常工作中,常常需要把某些相关的数据放进这样的“仓库”,并根据管理的需要进行相应的处理。
例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。
(4)数据优化知识大全扩展阅读
数据库,简单来说是本身可视为电子化的文件柜--存储电子文件的处所,用户可以对文件中的数据进行新增、截取、更新、删除等操作。
数据库指的是以一定方式储存在一起、能为多个用户共享、具有尽可能小的冗余度的特点、是与应用程序彼此独立的数据集合。
在经济管理的日常工作中,常常需要把某些相关的数据放进这样的"仓库",并根据管理的需要进行相应的处理。
例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。
E. 如何优化数据库
设计数据库要满足三大范式:第一范式:
1、内容相似的数据列必须消除(消除的办法就是再创建一个数据表来存放他们,建立关联关系)
2、必须为每一组相关数据分别创建一个表
3、每条数据记录必须用一个主键来标示
第二范式:
1、只要数据列里面的内容出现重复,就意味着应该把表拆分为多个表
2、拆分形成的表必须用外键关联起来。
第三范式:
1、与主键没有直接关系的数据列必须消除(消除的办法就是再创建一个表来存放他们)
F. 数据库优化是什么意思
数据库优化,首先最初硬件方面就可以优化硬盘IO,内存分配,就是安装时候调整的一系列操作系统级的内核参数,之后就是数据库架构上的优化了,逻辑、数据结构等等,最后就是代码上的优化。当然优化是一个长期的工作,没有最优只有更优。
G. 数据库优化怎么做
太复杂了,简单的说两句吧,
比如存储过程优化,选择一个好的数据库引擎,然后使用NTFS磁盘格式,
把数据库临时文件用单独的磁盘保存,要创建适当的索引,
有技术的话单独为数据库创建一个缓存服务器,
有钱的话选择X64的服务器系统和数据库引擎,简直是如虎添翼。。。
H. 如何优化erp数据库
数据,也许你现在觉得没有用,汇总了,将来不知道什么时候就用到
所以不管什么优化方式都是不科学的
只能是说,根据你最紧迫的需求进行处理
比如你的ERP系统由于数据过多而缓慢,那么一是想办法升级硬件、二是想办法优化数据库、三是引用更好的算法
从优化来说,可以加索引、可以改视图、可以优化存储过程,还可以去掉一些目前看无用的数据,而这最后一条往往是见效最快的
所以很多ERP软件采用的是年结的方法,每年建个新数据库,速度会有显着提升
但是,分割的时间段和粒度和企业数据量和规模应该紧密相关
而这么做,损失的是历史数据,或者说牺牲了历史数据的分析方便性,而提升了现有数据处理能力
那么,等你们解决了现有矛盾,需要从历史数据挖掘信息时,就应该引入数据集市技术,独立于ERP系统进行数据的切片和分析。
所以,为了将来能够进行有效分析,我建议你采用的优化手段一定是要改善现有ERP系统处理速度,而同时不损害历史既有数据的方法。这需要你的软件供应商能够支持,或者你作为软件厂商需要考虑。