当前位置:首页 » 基础知识 » 冀教版高中数学知识点
扩展阅读
同学考差怎么安慰他 2025-01-11 14:17:28

冀教版高中数学知识点

发布时间: 2022-08-07 12:16:25

A. 高中数学有哪些知识点

第一章 集合与函数概念
1.集合的概念及其表示意思;2.集合间的关系;3.函数的概念及其表示;4.函数性质(单调性、最值、奇偶性)
第二章 基本初等函数(I)
一.指数与对数
1.根式;2.指数幂的扩充;3.对数;4.根式、指数式、对数式之间的关系;5.对数运算性质与指数运算性质
二.指数函数与对数函数
1.指数函数与对数函数的图像与性质;2.指数函数y=ax的关系
三.幂函数 (定义、图像、性质)
第三章 函数的应用
一.方程的实数解与函数的零点
二.二分法
三.几类不同增长的函数模型
四.函数模型的应用
必修2知识点
一、直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.
当时,; 当时,; 当时,不存在.
②过两点的直线的斜率公式:
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.
(3)直线方程
①点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:()直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.
⑤一般式:(A,B不全为0)
注意:各式的适用范围 特殊的方程如:
平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系:,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中.
(6)两直线平行与垂直
当,时,

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.
(7)两条直线的交点
相交
交点坐标即方程组的一组解.
方程组无解 ; 方程组有无数解与重合
(8)两点间距离公式:设是平面直角坐标系中的两个点,

(9)点到直线距离公式:一点到直线的距离
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解.
二、圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
2、圆的方程
(1)标准方程,圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点; 当时,方程不表示任何图形.
(3)求圆方程的方法:
一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线,圆,圆心到l的距离为,则有;;
(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
设圆,

B. 高中数学必修1知识点总结

马上就要高考了,现在高中数学让很多孩子头疼,很多的家长还有孩子都开始着急,他们都在上一些辅导班,都在采取一对一的辅导,对于一对一的教师都是可以抓住孩子的一些弱点,然后还要了解他们的学习过程,还会帮助学生制定一些计划,帮助他们提高学习的效率,对于高中数学,一定掌握学习的方法,才可以提高成绩.高中数学都要学习什么知识?

高中数学知识

对于高中数学的一些知识,其实还是很简单的,只要你抓住学习的方法,从中找到乐趣,让自己喜欢上数学,对你的学习是很有帮助的,至于一对一辅导,其实还是有用的,好的老师会给你讲述好的学习方法,然后让你考一个好成绩,拿到满意的答卷.

C. 谁有高中数学必修一的全部知识点整理,一定要全.简洁

高中数学知识点总结1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。中元素各表示什么?注重借助于数轴和文氏图解集合问题。空集是一切集合的子集,是一切非空集合的真子集。3.注意下列性质:(3)德摩根定律:4.你会用补集思想解决问题吗?(排除法、间接法)的取值范围。6.命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。)原命题与逆否命题同真、同假;逆命题与否命题同真同假。7.对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。)8.函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)9.求函数的定义域有哪些常见类型?10.如何求复合函数的定义域?义域是_____________。11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?12.反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)13.反函数的性质有哪些?①互为反函数的图象关于直线y=x对称;②保存了原来函数的单调性、奇函数性;14.如何用定义证明函数的单调性?(取值、作差、判正负)如何判断复合函数的单调性?∴……)15.如何利用导数判断函数的单调性?值是()A.0B.1C.2D.3∴a的最大值为3)16.函数f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。17.你熟悉周期函数的定义吗?函数,T是一个周期。)如:18.你掌握常用的图象变换了吗?注意如下“翻折”变换:19.你熟练掌握常用函数的图象和性质了吗?的双曲线。应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程②求闭区间[m,n]上的最值。③求区间定(动),对称轴动(定)的最值问题。④一元二次方程根的分布问题。由图象记性质!(注意底数的限定!)利用它的单调性求最值与利用均值不等式求最值的区别是什么?20.你在基本运算上常出现错误吗?21.如何解抽象函数问题?(赋值法、结构变换法)22.掌握求函数值域的常用方法了吗?(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)如求下列函数的最值:23.你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?24.熟记三角函数的定义,单位圆中三角函数线的定义25.你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?(x,y)作图象。27.在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。28.在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?29.熟练掌握三角函数图象变换了吗?(平移变换、伸缩变换)平移公式:图象?30.熟练掌握同角三角函数关系和诱导公式了吗?“奇”、“偶”指k取奇、偶数。A.正值或负值B.负值C.非负值D.正值31.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?理解公式之间的联系:应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)具体方法:(2)名的变换:化弦或化切(3)次数的变换:升、降幂公式(4)形的变换:统一函数形式,注意运用代数运算。32.正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?(应用:已知两边一夹角求第三边;已知三边求角。)33.用反三角函数表示角时要注意角的范围。34.不等式的性质有哪些?答案:C35.利用均值不等式:值?(一正、二定、三相等)注意如下结论:36.不等式证明的基本方法都掌握了吗?(比较法、分析法、综合法、数学归纳法等)并注意简单放缩法的应用。(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)38.用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始39.解含有参数的不等式要注意对字母参数的讨论40.对含有两个绝对值的不等式如何去解?(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)证明:(按不等号方向放缩)42.不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)43.等差数列的定义与性质0的二次函数)项,即:44.等比数列的定义与性质46.你熟悉求数列通项公式的常用方法吗?例如:(1)求差(商)法解:[练习](2)叠乘法解:(3)等差型递推公式[练习](4)等比型递推公式[练习](5)倒数法47.你熟悉求数列前n项和的常用方法吗?例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。解:[练习](2)错位相减法:(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。[练习]48.你知道储蓄、贷款问题吗?△零存整取储蓄(单利)本利和计算模型:若每期存入本金p元,每期利率为r,n期后,本利和为:△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足p——贷款数,r——利率,n——还款期数49.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不50.解排列与组合问题的规律是:相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。如:学号为1,2,3,4的四名学生的考试成绩则这四位同学考试成绩的所有可能情况是()A.24B.15C.12D.10解析:可分成两类:(2)中间两个分数相等相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。∴共有5+10=15(种)情况51.二项式定理性质:(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第表示)52.你对随机事件之间的关系熟悉吗?的和(并)。(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。(6)对立事件(互逆事件):(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。53.对某一事件概率的求法:分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生如:设10件产品中有4件次品,6件正品,求下列事件的概率。(1)从中任取2件都是次品;(2)从中任取5件恰有2件次品;(3)从中有放回地任取3件至少有2件次品;解析:有放回地抽取3次(每次抽1件),∴n=103而至少有2件次品为“恰有2次品”和“三件都是次品”(4)从中依次取5件恰有2件次品。解析:∵一件一件抽取(有顺序)分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。54.抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。55.对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。要熟悉样本频率直方图的作法:(2)决定组距和组数;(3)决定分点;(4)列频率分布表;(5)画频率直方图。如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。56.你对向量的有关概念清楚吗?(1)向量——既有大小又有方向的量。在此规定下向量可以在平面(或空间)平行移动而不改变。(6)并线向量(平行向量)——方向相同或相反的向量。规定零向量与任意向量平行。(7)向量的加、减法如图:(8)平面向量基本定理(向量的分解定理)的一组基底。(9)向量的坐标表示表示。57.平面向量的数量积数量积的几何意义:(2)数量积的运算法则[练习]答案:答案:2答案:58.线段的定比分点※.你能分清三角形的重心、垂心、外心、内心及其性质吗?59.立体几何中平行、垂直关系证明的思路清楚吗?平行垂直的证明主要利用线面关系的转化:线面平行的判定:线面平行的性质:三垂线定理(及逆定理):线面垂直:面面垂直:60.三类角的定义及求法(1)异面直线所成的角θ,0°<θ≤90°(2)直线与平面所成的角θ,0°≤θ≤90°(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)三类角的求法:①找出或作出有关的角。②证明其符合定义,并指出所求作的角。③计算大小(解直角三角形,或用余弦定理)。[练习](1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。①求BD1和底面ABCD所成的角;②求异面直线BD1和AD所成的角;③求二面角C1—BD1—B1的大小。(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。(∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……)61.空间有几种距离?如何求距离?点与点,点与线,点与面,线与线,线与面,面与面间距离。将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。如:正方形ABCD—A1B1C1D1中,棱长为a,则:(1)点C到面AB1C1的距离为___________;(2)点B到面ACB1的距离为____________;(3)直线A1D1到面AB1C1的距离为____________;(4)面AB1C与面A1DC1的距离为____________;(5)点B到直线A1C1的距离为_____________。62.你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?正棱柱——底面为正多边形的直棱柱正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。正棱锥的计算集中在四个直角三角形中:它们各包含哪些元素?63.球有哪些性质?(2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!(3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。(5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。积为()答案:A64.熟记下列公式了吗?(2)直线方程:65.如何判断两直线平行、垂直?66.怎样判断直线l与圆C的位置关系?圆心到直线的距离与圆的半径比较。直线与圆相交时,注意利用圆的“垂径定理”。67.怎样判断直线与圆锥曲线的位置?68.分清圆锥曲线的定义70.在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)71.会用定义求圆锥曲线的焦半径吗?如:通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。72.有关中点弦问题可考虑用“代点法”。答案:73.如何求解“对称”问题?(1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。75.求轨迹方程的常用方法有哪些?注意讨论范围。(直接法、定义法、转移法、参数法)76.对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。

D. 怎么才能提高数学成绩

如何学好数学1

数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:

一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
如何学好数学2

高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。
有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。
至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。
l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。
2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。
3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。
4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。

答一送一:
如何在学习上占第一

学习上占第一,每个同学都可以做到。之所以你占不了第一,主要有两个原因:第一、生活方式、学习方法不正确,第二、没有坚强的毅力。在这里面毅力是第一重要的,学习方法是第二重要的。在现实生活中,全中国仍有70%以上的占第一的学生虽然占了第一,但他们并不是毅力最强的,或者说学习方法生活方式不是最好的。他们也许今天是第一,明天就不是了。也就是说,你如果按占第一的方法去学习、去锻炼,一般都会超过现有的第一。
辉煌的第一是不是要经过艰苦的努力才能得到呢?说它艰苦是因为“培养坚强的毅力”是世上最艰苦的工作,只有你具有了坚强的毅力才可能成为第一,当然正确的生活方式和学习方法也是特别重要的。在这里什么是坚强的毅力呢,只要你能按下面几点要求去做,而且每天都做记录,持之以恒,每天都不间断地坚持一个学期、一年、三年,那么你的毅力就足以达到占第一的要求了。在这项锻炼中就怕你中间有间断,风雨、心情、疾病、家务等等都不是你中断锻炼的理由。你要记住,学好学业是你学生生活中最重要的,没有什么工作的重要性会超过它。除了坚强的毅力,正确的学习方法和生活方式也是很重要的。
第一人人可以占,原来占第一的同学也不一定就比你更聪明多少,脑细胞也不一定比你多。爱迪生不是说过“天才是百分之九十九的汗水加上百分之一的灵感”吗?!所以你第一要过心理关,就是说:要坚信你一定能成功,一定会超过现有的第一,包括现在是第一的你自已。
第二、你要天天锻炼。没有一个健康的身体,你什么事也做不好,即使偶尔做好了,也不能长久。每天30分钟左右的锻炼一定要天天坚持。锻炼的形式多种多样,跑步、打乒乓球、打篮球、俯卧撑、立定跳远等等都可以。有些同学好面子,见到别人不跑步,怕自已跑别人看见了不好意思,那就错了,真正不好意思的是辛苦了几年考不上大学,是上了几年大学还要下岗。如果将来自已养活不了自已,那才是真正不好意思的。
第三、学习态度要端正。每次上课前,一定要把老师准备讲的内容预习好,把不好理解的、不会的内容做好标记,在老师讲到该处时认真听讲。如果老师讲了以后还不会,一定要再问老师,直到明白为止。当一个问题问了两遍三遍还不会时,一般的同学就不好意思问了,千万别这样,老师们最喜欢“不问明白誓不罢休”的性格了。上课时要认真听讲,认真思考,做好笔记。做笔记时一定要清楚,因为笔记的价值比课本还,将来的复习主要靠它。
课下首先要做的不是做作业,而是把笔记、课本上的知识点先学好,该记的内容一定把它背熟。这样会大大提高你做作业的速度,即平常说的“磨刀不误砍柴功”。做作业时应该独立思考,实在不能解决的问题,再和同学、老师商量。问同学时,不要问这道题结果是什么,而是要问“这道题究竟怎么做?”“这道题为什么这样做?”
第四、正确面对错误和失败。当有的知识你没有在课上学会、当你的练习做错时或者在考试中成绩太差时,你既不要报怨,也不要气馁,你应该正视这自已不愿得到的现实。没有学会不要紧,把该知识写到你的《备忘录》中,然后问同学问老师,再把正确的解释或结果,写到其它页上。错了题也是这样,考试失利不就是错的题多点吗,正确的方法是把原题抄到《备忘录》中,把正确的做法学会后,把做法和结果写到其它页上,如果能注上做该类题的注意事项,就会把你的学习效率又提高30%-60%。之所以把答案或解释写到其它页上,就是为了下次看知识点或错误的题目时,再动动脑筋,想想该知识点的理解和解释情况,再练练该题的做法和答案。错误和失败并不可怕,只要你能正视它,一切都会成为你成功的动力。
第五、记帐。你的学习一定要有一本帐,你什么时候做得好,记下来,什么时候错了题,记下来(注:帐本上只记“今天错题为《备忘录》××页×题)。课下几点几分学了英语,记录好;几点几分至几点几分学了物理记下来。把你生活中锻炼、学习的分分秒秒记录在你的帐本上,把你每次作业和考试中的正确题数、错误题数和错误题号(《备忘录》上的页号题号)一一记录在你的帐本上。把你每天学会的知识点都记录在帐本上,以备明天、后天再检查一下自已是否真正掌握了这些知识点。在帐本上过去了几天的知识点,你一定要学会并能熟练掌握。
帐本记录的是你学习、锻炼中每一个细节。这样记下来,在校生活中,每天约有一页32开纸的记录量,不在校时可能有两页32纸的记录量。在星期和假期里千万不能间断。把你的帐一天天积累起来,这就是你所走过的第一之路。
虽说在素质教育的今天学校不排名次,但学习出类拔萃是我们努力的目标,是我们考上高一级学校的必要条件,也是我们走向社会后,做好每一件工作的资本。同学们,去争取第一吧。如果你一年年按上面的要求做,你一定能占第一。
如果大家都这样去做,即使你占不了第一,一定是中国出类拔萃的学生,因为中国大多数的同学没有这样的毅力,没有这样好的学习方法和生活方式。同学们,为美好的明天奋斗吧

E. 求高中数学基础知识提纲

希望能帮到你、、、、、、、、、、、、
高中数学知识点总结
高中数学立体几何初步知识点总结:
立体几何初步:①柱、锥、台、球及其简单组合体等内容是立体几何的基础,也是研究空间问题的基本载体,是高考考查的重要方面,在学习中应注意这些几何体的概念、性质以及对面积、体积公式的理解和运用。②三视图和直观图是认知几何体的基本内容,在高考中,对这两个知识点的考查集中在两个方面,一是考查三视图与直观图的基本知识和基本的视图能力,二是根据三视图与直观图进行简单的计算,常以选择题、填空题的形式出现。③几何体的表面积和体积,在高考中有所加强,一般以选择题、填空、简答等形式出现,难度不大,但是常与其他问题一起考查④平面的基本性质与推理主要包括平面的有关概念,四个公理,等角定理以及异面直线的有关知识,是整个立体几何的基础,学习时应加强对有关概念、定理的理解。⑤平行关系和垂直关系是立体几何中的两种重要关系,也是解决立体几何的重要关系,要重点掌握。
高中数学平面解析几何初步知识点总结:
平面解析几何初步:①直线与方程是解析几何的基础,是高考重点考查的内容,单独考查多以选择题、填空题出现;间接考查则以直线与圆、椭圆、双曲线、抛物线等知识综合为主,多为中、高难度试题,往往作为把关题出现在高考题目中。直接考查主要考查直线的倾斜角、直线方程,两直
高中数学集合知识点总结:
作为高中数学的一种基本语言及工具,几乎为每年高考的必考内容,多以选择题出现,分值约占总分的3%-5%,多与函数、不等式、数列等知识联系而命制小型综合题,根据新课标考试大纲的要求,集合关系与集合运算为考试重点,因此既要牢固掌握集合基本概念与运算,又要加强集合与其他数学知识的联系,突出集合的工具性,尤其是熟练进行集合的自然语言、图形语言、符号语言的相互转化。
线的位置关系,点到直线的距离,对称问题等,间接考查一定会出现在高考试卷中,主要考查直线与圆锥曲线的综合问题。②圆的问题主要涉及圆的方程、直线与圆的位置关系、圆与圆的位置关系以及圆的集合性质的讨论,难度中等或偏易,多以选择题、填空题的形式出现,其中热点为圆的切线问题。③空间直角坐标系是平面直角坐标系在空间的推广,在解决空间问题中具有重要的作业,空间向量的坐标运算就是在空间直角坐标系下实现的。空间直角坐标系也是解答立体几何问题的重要工具,一般是与空间向量在坐标运算结合起来运用,也不排除出现考查基础知识的选择题和填空题。
高中数学函数概念与基本初等函数ⅰ知识点总结:
函数概念与基本初等函数ⅰ:①函数是高中数学最重要、最基础的内容,函数的思想方法贯穿于各章的知识中,函数问题在每年的高考中,不但以
高中数学算法初步知识点总结:
算法初步:①算法是新课标增加的内容,以选择题或填空题的形式考查,应该注意理解算法的基本概念与特征,注意算法的本质是解决问题的一种程序性方法,学会算法的自然语言。框图程序设计语言等的相互转化。②基本算法语句也是新课标增加的内容,是数学及其应用的重要组成部分,预计高考对本部分的考查可能与代数、几何中的有关知识结合,以选择题、填空题的形式考查对几种基本算法语句的理解和应用。
选择题、填空题的形式出现,而且几乎每年都有一道解答题,考查内容重点涉及函数的概念、图像、性质等各个方面,难度在低、中、高档方面均有体现。②函数和方程为新课标新增添内容,要求结合二次函数的图像,了解函数的零点与方程根的联系,能判断一元二次方程的根的存在性及根的个数;根据具体函数的图像,能够用二分法求相应方程的近似解,本部分知识蕴含着数形结合的思想、函数与方程的思想,在学习时注意体会。③学习数学是为了应用数学,指数函数、对数函数以及幂函数等都是重要的基本初等函数,是函数概念的具体体现于综合应用,和其他函数一样,对于它们的定义、图像以及性质等是高考考查的重点,与其他函数、方程、不等式以及数列相融合的知识也是考查的热点。
高中数学统计知识点总结:
统计:①随机抽样在高考中主要是选择题或填空题,考查学生对各种抽样方法的理解,一次学习时应加强对这三种抽样飞的理解,搞清三种抽样法的区别和联系。②样本估计法也是以小题为主,考查排列分布直方图、平均数、标准差等的概念的理解和应用,学习时应结合实例理解样本估计总体的思想,加深对;频率分布直方图的理解与应用,能从数据中抽取基本的数字特征,并记准相应的公式。③变量的相关性的重点是变量间的线性相关及两个变量的线性相关、最小二法思想、回归方程的建立以及对回归直线与观测数据的理解。
高中数学概率知识点总结:
概率:①随机事件的概率为近几年新增添的内容,高考中主要以选择题、填空题的形式出现,与其他知识综合考查其应用,学习时,应通过基础知识的学习理解其基本概念、基本原理,然后在此基础上解决生活中的有关问题,还要理解随机事件发生的不确定性和频率的稳定性等知识。②古典概型是概率中最基本的一个概率模型,高考中,主要是利用古典概型的概率公式解决一些古典概型的应用题,考查形式可以是选择题、填空题、解答题。③几何概型是新增添内容,高考可能会有所侧重,主要以选择题、填空题出现,应注意基本概念的理解。
高中数学基本初等函数ⅱ(三角函数)知识点总结:

高中数学平面向量 知识点总结:
平面向量:在近几年的高考中,平面向量每年都考,而且有加强的趋势,在学习中应抓住两个方面:一是向量的概念、性质、运算;二是应用向量解决距离、夹角、垂直、模的问题。学会运用向量处理三角函数、解析几何、平面几何、实际应用等综合问题,以发展运算求解能力和解析、解决
高中数学三角恒等变形知识点总结:
三角恒等变形:①两角和与差的三角函数公式是历年高考的重要内容,而且有进一步加强的趋势。因此公式应用讲究一个活字,深刻理解各个公式之间的联系,掌握公式应用的通性通法是学习的关键。②三角恒等变形中的三角函数求值、化简及恒等证明是高考是热点,需要掌握的公式有两角和差、倍角的三角函数公式。学习的重点是掌握变换的基本思想方法,不是盲目地训练繁难 偏题、怪题,应注重通性、通法的运用。
实际问题的能力。
本初等函数ⅱ(三角函数):①三角函数是中学中重要的初等函数之一,它的定义和性质有十分明显的特征和规律性,它和代数、几何有着密切的联系,是研究其他部分知识的重要工具,在实际问题中也有重要的应用,是高考对基础知识和基本技能考查的重要内容之一。②在高考中主要有四类问题:一是与三角函数单调性有关的问题,二是与三角函数图像有关的问题,三是应用同角变换和诱导公式,求三角函数及化简和等式证明的问题,四是与周期和奇偶性有关的问题。③高考中多以选择题、填空题形式出现,但也不排除在解答题中单独出现,其难度为中、低档。
高中数学解三角形知识点总结:
解三角形:在高考试题中,有关解三角形的问题主要考查正弦定理、余弦定理及利用三角公式进行恒等变形的能力,以化简、求值或判断三角形的形状为主,也与其他知识结合,考查解决综合问题的能力。有关解三角形的题型主要是选择题、填空题、解答题等,一般为简单题或中档题。
高中数学数列知识点总结:
数列:数列是高中数学的重要内容,是中学数学联系实际的主要渠道之一,数列与数、式、函数、方程、不等式、三角函数、解析几何的关系十分密切。数列中的递推思想、函数思想、分类讨论思想以及数列求和、求通向公式的各种方法和技巧在中学数学中有着十分重要的地位,因此数列知识可以命综合性强的试题。每年高考中与数列有关的试题约占全卷的10%-15%,基因数列内容的客观题,也有数列与相关内容结合的综合题与实际应用题。
高中数学不等式知识点总结:
不等式:①不等关系是客观世界中量与量之间的一种主要关系,而不等式则是反映这种关系的基本形式,一直是高考考查的重点内容,尤其以实际问题、函数为背景的综合题较多。不等式的定义域性质是不等式的基础,许多不等式的定理、公式都是在此基础上推理、拓展而成的,因此学校时要抓住基本概念和性质,熟练掌握性质的变形及其应用,不断提升思维的深度和广度,才能在解决与不等式有关的综合题上有备无患、得心应手。②一元二次不等式是历年考查的重点,因为其与一元二次函数、一元二次方程等联系密切,内容交融,经常考查含参数的不等式的求解、恒成立问题、一元二次不等式的实际应用、综合推理题等。因此学习时应该通过图像了解一元二次不等式与相应的二次函数、二次方程的联系。③线性规划问题是众多知识的交汇点,在实际生活、实际生产中的应用十分广泛,而且在线性规划问题的解决中,需要用到多种数学思想方法。所以线性规划也是高考命题的热点内容。高考中主要考查平面区域的表示。线性目标函数的最值等问题,主要以选择题、填空题的形式出现,有时也以解答题的形式出现。