⑴ 大一高数知识点有哪些
大一高数知识点有集合间的基本关系。
1、“包含”关系—子集。
2、相等”关系:A=B (5≥5,且5≤5,则5=5)。
3、不含任何元素的集合叫做空集,记为Φ。
高数一般指高等数学。高等数学是指相对于初等数学和中等数学而言,数学的对象及方法较为繁杂的一部分,中学的代数、几何以及简单的集合论初步、逻辑初步称为中等数学,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。工科、理科、财经类研究生考试的基础科目。
高等数学分为几个部分为:
1、函数 极限 连续。
2、一元函数微分学。
3、一元函数积分学。
4、向量代数与空间解析几何。
5、多元函数微分学。
6、多元函数积分学。
7、无穷级数。
8、常微分方程。
⑵ 高等数学函数的知识点
主要的高等数学函数知识,涉及极限的主要有以下几个方面:
可涉及极限计算的知识点有,连续性及间断点的分类(分段函数分段点的连续问题),可导(导数是由函数极限来定义的),渐近线,二重极限(多元微分学)。其中,二重极限难度较大。
极限以间接考查或与其他知识点综合出题的比重很大,也可以直接出题,所以考查形式有多种。如已知极限求参数,无穷小的概念与比较,求间断点类型和个数,求渐近线方程或条数,求某一点处的连续性和可导性,求多元函数在某一点处极限是否存在,求含有极限的函数表达式,已知极限求极限等。
函数极限计算的常规方法主要分四类:等价无穷小替换,洛必达法则,泰勒公式,导数定义。 数列极限涉及的常规方法主要有四类:夹逼定理,定积分的定义(主要是针对部分和求极限),转化为函数极限(归结原则),单调有界准则。
⑶ 高数必备基础知识
高数必备基础知识,主要包括各种知识点,现在总结如下:
1、正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。2、理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限,掌握无穷小的比较方法。
3、理解函数连续性的概念,会判别函数间断点的类型。了解初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理和介值定理),并会应用这些性质。
4、掌握利用两个重要的极限:lim(sinx/x)=1,lim(1+1/x)=e,理解连续函数的概念及闭区间上连续函数的性质。5、理解分段函数、复合函数的概念,了解反函数和隐函数的概念。
一元函数微分学1、理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的关系。
2、掌握导数的四则运算法则和一阶微分的形式不变性。了解高阶导数的概念,会求简单函数的n阶导数,分段函数的一阶、二阶导数。会求隐函数和由参数方程所确定的函数的一阶、二阶导数及反函数的导数。
3、理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理。
4、掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用。
5、理解函数极值的概念,掌握函数最大值和最小值的求法及简单应用,会用导数判断函数的凹凸性和拐点,会求函数图形水平、铅直和斜渐近线,会描绘简单函数的图形。
6、了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角。
7、掌握用罗必塔法则求未定式极限的方法。一元函数积分学
1、理解原函数和不定积分的概念,了解定积分的概念。
2、掌握不定积分的基本公式,不定积分和定积分的性质及定积分中值定理,掌握换元积分法和分部积分法。
3、会求有理函数、三角函数和简单无理函数的积分。
4、理解变上限积分定义的函数,会求它的导数,掌握牛顿莱布尼兹公式。
5、了解广义积分的概念并会计算广义积分。6、掌握用定积分计算一些几何量和物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力等。)
以上就是部分高数必备之术基础知识的难点要点,以及重要理解的地方,需要你认真学习才可以能掌握
⑷ 大一高数必考知识点
大一高数必考知识点,大一里面的知识点有很多,你可以在必考知识点里头找一些重点去学习一下,因为谁也不知道大一到底能考出什么样的题材
⑸ 大一高数上学期期末知识点有哪些
大一上学期主要是积分:极限、导数、微分、定积分、不定积分。大一下学期是第一学期的加深:偏导数、二重积分、(无穷)级数。
学习数学的方法
1、学数学最重要的就是解题能力。要想会做数学题目,就要有大量的练习积累,知道各类型题目的解题步骤与方法,题目做多了就有手感了,再拿出类似的题目才会有解题思路。
2、其次是学会预习。解题思路不是直接就有的,也并非通过做几道简单的题目就能轻易获得,而是在预习过程中不断积累出来的。因此,预习在数学学习过程中起到了非常重要的作用。预习一方面能够让大家提前对数学知识有所了解,另一方面能够培养数学独立学习能力。
⑹ 高等数学包括哪些内容
主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。是工科、理科、财经类研究生考试的基础科目。
指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
(6)大学高等数学知识点扩展阅读
初级数学的基本内容
一、小学
整数、分数和小学的四则运算、数与代数、空间与图形、简单统计与可能性、一元一次方程,圆,正负数,立体几何初步。
二、初中
代数部分: 有理数(正数和负数及其运算),实数(根式的运算),平面直角坐标系,基本函数(一次函数,二次函数,反比例函数),简单统计,锐角三角函数,方程、(一元一次方程,二元一次方程组,一元二次方程,三元一次方程组),因式分解、整式、分式、一元一次不等式。
几何部分:全等三角形,四边形(重点是平行四边形及特殊的平行四边形),对称与旋转,相似图形(重点是相似三角形),圆的基本性质,
三、高中
集合,基本初等函数(指数函数、对数函数,幂函数,高次函数),二次函数根分布与不等式,柯西不等式,排列不等式,初等行列式,三角函数,解析几何与圆锥曲线(椭圆,抛物线,双曲线),复数,数列,高等统计与概率,排列组合,平面向量,空间向量,空间直角坐标系,导数以及相对简单的定积分。
⑺ 大一高数知识点归纳是什么
大一高数知识点如下:
1、泰勒公式是一个用函数在某点的信息描述其附近取值的公式。
2、若连续曲线y=f(x) 在 A(a,f(a)),B(b,f(b))两点间的每一点处都有不垂直于x轴的切线,则曲线在A,B间至少存在1点 ,使得该曲线在P点的切线与割线AB平行。
3、洛必达法则(L’Hôpital’s rule)是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。可以解决0/0型不定式极限和∞/∞型不定式极限以及其他拓展的极限问题。
4、函数的间断点:第一类间断点和第二类间断点,左、右极限都存在的是第一类间断点,第一类间断点有跳跃间断点和可去间断点。左右极限至少有一个不存在的间断点是第二类间断点。
5、极限的性质:局部有界性、唯一性、局部保号性、不等式性质(保序性)。
⑻ 大一高数知识点归纳有哪些
大一高数知识点归纳:
1、函数的定义:函数是从量的角度对运动变化的抽象表述,是一种刻画运动变化中变化量相依关系的数学模型。设有两个变量x与y,如果对于变量x在实数集合D内的每一个值,变量y按照一定的法则都有唯一的值与之对应,那么就称x是自变量,y是x的函数,记作y=f(x),其中自变量x取值的集合D叫函数的定义域,函数值的集合叫做函数的值域。
2、解析法:即用解析式(或称数学式)表示函数。如y=2x+1, y=︱x︱,y=lg(x+1),y=sin3x等。便于对函数进行精确地计算和深入分析。
3、列表法:即用表格形式给出两个变量之间函数关系的方法。便于差的某一处的函数值。
4、反函数:如果在已给的函数y=f(x)中,把y看作自变量,x也是y的函数,则所确定的函数x=∮(y)叫做y=f(x)的反函数,记作x=f(y)或y= f(x)(以x表示自变量)。
5、集合的三个特性。集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。
6、隐函数相对于显函数而言的一种函数形式;所谓显函数,即直接用含自变量的式子表示的函数。
7、无穷小的性质有限个无穷小的代数和为无穷小;有限个无穷小的乘积为无穷小;有界函数与无穷小的乘积为无穷小。