① 初中数学知识有哪些简单概括
知识点1:一元二次方程的基本概念
知识点2:直角坐标系与点的位置
知识点3:已知自变量的值求函数值
1.当x=2时,函数y=的值为1.
2.当x=3时,函数y=的值为1.
3.当x=-1时,函数y=的值为1.
知识点4:基本函数的概念及性质
1.函数y=-8x是一次函数.
2.函数y=4x+1是正比例函数.
4.抛物线y=-3(x-2)2-5的开口向下.
5.抛物线y=4(x-3)2-10的对称轴是x=3.
6.抛物线的顶点坐标是(1,2).
7.反比例函数的图象在第一、三象限.
知识点5:数据的平均数中位数与众数
1.数据13,10,12,8,7的平均数是10.
2.数据3,4,2,4,4的众数是4.
3.数据1,2,3,4,5的中位数是3
知识点6:特殊三角函数值
2.sin260°+cos260°=1.
3.2sin30°+tan45°=2.
4.tan45°=1.
5.cos60°+sin30°=1.
知识点7:圆的基本性质
1.半圆或直径所对的圆周角是直角.
2.任意一个三角形一定有一个外接圆.
3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.
4.在同圆或等圆中,相等的圆心角所对的弧相等.
5.同弧所对的圆周角等于圆心角的一半.
6.同圆或等圆的半径相等.
7.过三个点一定可以作一个圆.
8.长度相等的两条弧是等弧.
9.在同圆或等圆中,相等的圆心角所对的弧相等.
10.经过圆心平分弦的直径垂直于弦。
知识点8:直线与圆的位置关系
1.直线与圆有唯一公共点时,叫做直线与圆相切.
2.三角形的外接圆的圆心叫做三角形的外心.
3.弦切角等于所夹的弧所对的圆心角.
4.三角形的内切圆的圆心叫做三角形的内心.
5.垂直于半径的直线必为圆的切线.
6.过半径的外端点并且垂直于半径的直线是圆的切线.
7.垂直于半径的直线是圆的切线.
8.圆的切线垂直于过切点的半径.
② 数学初三知识点归纳有哪些
数学初三知识点如下:
1、含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。2、同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
3、使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
4、若已知函数图像与x轴的两个交点坐标,可设为交点式。
5、一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。
③ 初中数学有哪些知识点
考点1
相似三角形的概念、相似比的意义、画图形的放大和缩小。
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2
平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3
相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4
相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5
三角形的重心
考核要求:知道重心的定义并初步应用。
考点6
向量的有关概念
考点7
向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算
考点8
锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点9
解直角三角形及其应用
考核要求:
(1)理解解直角三角形的意义;
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
考点10
函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数
考核要求:
(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
考点11
用待定系数法求二次函数的解析式
考核要求:
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点12
画二次函数的图像
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
考点13
二次函数的图像及其基本性质
考核要求:
(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要数形结合;
(2)二次函数的平移要化成顶点式。
考点14
圆心角、弦、弦心距的概念
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点15
圆心角、弧、弦、弦心距之间的关系
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点16
垂径定理及其推论
垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点17
直线与圆、圆与圆的位置关系及其相应的数量关系
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点18
正多边形的有关概念和基本性质
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
考点19
画正三、四、六边形。
考核要求:能用基本作图工具,正确作出正三、四、六边形。
考点20
确定事件和随机事件
考核要求:
(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点21
事件发生的可能性大小,事件的概率
考核要求:
(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;
(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
注意:
(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;
(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点22
等可能试验中事件的概率问题及概率计算
考核要求:
(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;
(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;
(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
注意:
(1)计算前要先确定是否为可能事件;
(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点23
数据整理与统计图表
考核要求:
(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;
(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点24
统计的含义
考核要求:
(1)知道统计的意义和一般研究过程;
(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点25
平均数、加权平均数的概念和计算
考核要求:
(1)理解平均数、加权平均数的概念;
(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点26
中位数、众数、方差、标准差的概念和计算
考核要求:
(1)知道中位数、众数、方差、标准差的概念;
(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
注意:
(1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;
(2)求中位数之前必须先将数据排序。
考点27
频数、频率的意义,画频数分布直方图和频率分布直方图
考核要求:
(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;
(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。
考点28
中位数、众数、方差、标准差、频数、频率的应用
考核要求:
(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;
(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;
(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。
④ 初二数学都有哪些知识点
《新初二曹.笑数学秋季培优班(人教版高清视频)》网络网盘资源下载
链接:
若资源有问题欢迎追问~
⑤ 关于冬奥会的数学知识有哪些
从2月4日本届冬奥会开幕以来,冰墩墩、谷爱凌等冬奥会顶流相继刷爆整个互联网,一夜间全民皆知。而在冬奥会中有许多有趣的冬奥数学知识点,你get到了吗?
01、冬奥会城市与气温:正负数
本届冬奥会由北京主办,张家口承办。为什么选张家口而不是温度更低的东北?除了距离原因,和温度也有很大关系。
历届冬奥会通常在2月份举办,气温-17℃~10℃是最理想的温度。
02、冬奥会中的图形:轴对称与中心对称
冬奥会的奖牌是圆形的,冬奥五环是由5个圆形组成的轴对称图形,雪花引导牌是中心对称图形。
03、跳台滑雪轨迹:抛物线
青蛙公主谷爱凌的夺冠第三跳为例,选手的助滑速度可达到24米/秒,在运动员滑行的时候,我们将会看到一条优美的抛物线,其运动轨迹可抽象为二次函数图像,问运动员离地最大高度?
04、各国国旗:比例
冬奥会场上的国旗形状基本都是长方形的,看起来差不多,但实际上,它们的长宽比例并不完全一致。比如,中国国旗比例为2:3,美国国旗为10:19,瑞典国旗为5:8。
印尼、摩纳哥和波兰都是红白条纹旗,但是它们的长宽比例也是不一样的。印尼是3:2,摩纳哥是5:4,波兰是8:5。
05、谷爱凌的1620°:角度
2月8日,北京首钢园,北京冬奥会自由式滑雪女子大跳台决赛,谷爱凌完成高难度1620°的第三跳后,以总分188.25分获得冬奥会历史上首枚自由式滑雪女子大跳台金牌。
从1080、1440到1620度,难度超级加倍,而1620°的周转体是身体绕自己上下体轴转四圈半。四圈半在腾空状态完成,难度相当的大。
06、冬奥场地的各个数字:数的认识
国家速滑馆又称“冰丝带”,是本届赛事唯一新建冰上竞赛场馆。国家速滑馆占地17公顷,拥有一条400米长的赛道,冰面达到世界最高标准。场馆可容纳约12000名观众。
⑥ 初中数学必背知识点
总结的有点多,请耐心看哈!
希望能帮助你,还请及时采纳谢谢!
数学,是一门关于如何思维的科学。熟记数学口诀,是解题的一条捷径,孩子做题思维就会变快。从而更加深刻的记住知识点,减轻孩子的学习负担,轻松学习。
下面小优老师将初中数学必须掌握的26个知识点口诀总结如下,希望对你有帮助。
圆的证明不算难,常把半径直径连;
有弦可作弦心距,它定垂直平分弦;
直径是圆最大弦,直圆周角立上边,
它若垂直平分弦,垂径、射影响耳边;
还有与圆有关角,勿忘相互有关联,
圆周、圆心、弦切角,细找关系把线连
同弧圆周角相等,证题用它最多见,
圆中若有弦切角,夹弧找到就好办;
圆有内接四边形,对角互补记心间,
外角等于内对角,四边形定内接圆;
直角相对或共弦,试试加个辅助圆;
若是证题打转转,四点共圆可解难;
要想证明圆切线,垂直半径过外端,
直线与圆有共点,证垂直来半径连,
直线与圆未给点,需证半径作垂线;
四边形有内切圆,对边和等是条件;
如果遇到圆与圆,弄清位置很关键,
两圆相切作公切,两圆相交连公弦。
⑦ 初三数学二次函数求大神解答: 2014年春晚上,一位叫小彩旗的姑娘在原地自转了四个多小时,细心的小
1,根据题意得y=x(170-x)2,根据函数关系式得,当X=85时,Y最大,最大值为7225。 3,(1)角A是直角时,AP垂直于AB,将sin60度带入函数关系式,得x=sin60或0,当x=0时为A点,将0舍去,代入sin60,P坐标为(根号三,170倍根号三减去3)(2)B是直角时,B点坐标为(170-40倍sin60°,-40)直线BP与AB垂直,方程为y=-x倍sin60°+170倍sin60°-160,得(x-sin60°)(x-170)=160,方程过于复杂,我这会累了,懒得解了,反正就又会有两个P点.(3)当P为直角时,无解,P点不存在,别算了,不写过程了。
⑧ 2020年春晚中有哪些东西运用到了数学
2020年春晚中有哪些东西运用到了数字,所有的节目都是应该应用到数字的。
⑨ 2015春晚有几个节目是关于数学的
没一个。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
⑩ 2020春晚节目中蕴含了什么数学问题
我觉得2020年的春节节目中蕴含了数学问题有很多,就比如说一些基础的计算或者是一些脑筋急转弯之类的东西。