当前位置:首页 » 基础知识 » 初中数学函数知识点精华及习题
扩展阅读
分享幼儿园小知识 2024-11-01 22:32:07

初中数学函数知识点精华及习题

发布时间: 2022-08-06 12:03:34

⑴ 初中数学函数知识点

1.常量和变量
在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.
2.函数
设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.
3.自变量的取值范围
(1)整式:自变量取一切实数.
(2)分式:分母不为零.
(3)偶次方根:被开方数为非负数.
(4)零指数与负整数指数幂:底数不为零.
4.函数值
对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.
5.函数的表示法
(1)解析法;(2)列表法;(3)图象法.
6.函数的图象
把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.
由函数解析式画函数图象的步骤:
(1)写出函数解析式及自变量的取值范围;
(2)列表:列表给出自变量与函数的一些对应值;
(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;
(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.
7.一次函数
(1)一次函数
如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.
(2)一次函数的图象
一次函数y=kx+b的图象是一条经过(0,b)点和
点的直线.
特别地,正比例函数图象是一条经过原点的直线.
需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.
(3)一次函数的性质
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为

(4)用函数观点看方程(组)与不等式
①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.
②二元一次方程组
对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.
③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.
8.反比例函数
(1)反比例函数
如果
(k是常数,k≠0),那么y叫做x的反比例函数.
(2)反比例函数的图象
反比例函数的图象是双曲线.
(3)反比例函数的性质
①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.
②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.
③反比例函数图象关于直线y=±x对称,关于原点对称.
(4)k的两种求法
①若点(x0,y0)在双曲线
上,则k=x0y0.
②k的几何意义:
若双曲线
上任一点A(x,y),AB⊥x轴于B,则S△AOB

⑵ 人教版初中函数知识点总结 要最全的

一、函数

1. 常量、变量和函数

在某一过程中可以取不同数值的量,叫做变量.在整个过程中保持统一数值的量或数,叫做常量或常数.一般地,设在变化过程中有两个互相关联的变量x,y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与之对应,那么就称y是x的函数,x叫做自变量.

2. 函数的两要素

(1)函数的定义域

(2)对应法则

3. 函数的表示方法

(1) 解析法

就是用一个等式来表示一个变量是另一个变量的函数,这个等式叫做这个函数的解析表达式(函数关系式).

(2) 列表法

(3) 图像法

4. 函数的值域

一般的,当函数f(x)的自变量x取定义域D中的一个确定的值a时,函数都有唯一确定的对应值,这个对应值称为x=a时的函数值,简称函数值,记作:f(a).

5. 函数的图像

若把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在直角坐标平面上描出一个点(x,f(x)),这些点构成一个图形F,这个图形F就是函数y=f(x)的图像.

知道函数的解析式,要画函数的图像,一般分为列表,描点,连线三个步骤.

二、正比例函数与反比例函数

1. 正比例函数

一般地,函数y=kx(k是不等于零的常数)叫做正比例函数,其中常数k叫做变量y与x之间的比例常数,确定了比例常数k,就可以确定一个正比例函数.

正比例函数y=kx有下列性质:

(1) 当k>0时,它的图像经过第一、三象限,y随着x的值增大而增大;当k<0时,他的图像经过第二、四象限,y随着x的增大而减小.

(2)随着比例常数的绝对值的增加,函数图像渐渐离开x轴而接近于y轴,因此,比例系数k和直线y=kx与x轴正方向所成的角有关据此,k叫做直线y=kx的斜率.

2. 反比例函数

一般地,函数y=k/x(k是不等于0的常数)叫做反比例函数.

反比例函数y=k/x有下列性质:

(1) 当k>0时,他的图像的两个分支分别位于第一、三象限内,在每一个象限内,y随x的值增大而减小;当k<0时,它的图像的两个分支分别位于第二、四象限内,在每一个象限内,y随x的增大而增大.

(2) 它的图像的两个分支都无限接近但永远不能达到x轴和y轴.

三、一次函数

1. 一次函数及其图像

形如y=kx+b(k,b为常数)的函数叫一次函数.

如果k=0时,函数变形为y=b,无论x在其定义域内取何值,y都有唯一确定的值b与之对应,这样的函数我们称它为常函数.

直线y=kx+b与y轴交与点(0,b),b叫做直线y=kx+b在y轴上的截距,简称纵截距.

2. 一次函数的性质

函数y=f(x),在a < x < b上,如果函数值随着自变量x的值增加而增加,那么我们说函数f(x)在a < x < b上是递增函数;如果函数值随着自变量x的值增大而减小,那么我们说函数y=f(x)在a < x < b上是递减函数.

如果分别画出两个二元一次方程所对应的一次函数图像,交点的坐标就是这个方程组的解,这种求二元一次方程组的解法叫图像法.

四 二次函数:y=ax^2+bx+c (a,b,c是常数,且a不等于0)
a>0开口向上
a<0开口向下
a,b同号,对称轴在y轴左侧,反之,再y轴右侧
|x1-x2|=根号下b^2-4ac除以|a|
与y轴交点为(0,c)
b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根
b^2-4ac<0,ax^2+bx+c=0无实根
b^2-4ac=0,ax^2+bx+c=0有两个相等的实根
对称轴x=-b/2a
顶点(-b/2a,(4ac-b^2)/4a)
顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a
函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减
函数向上移动d(d>0)个单位,解析式为y=a(x+b/2a)^2+(4ac-b^2)/4a+d,向下就是减

当a>0时,开口向上,抛物线在y轴的上方(顶点在x轴上),并向上无限延伸;当a<0时,开口向下,抛物线在x轴下方(顶点在x轴上),并向下无限延伸。|a|越大,开口越小;|a|越小,开口越大.

4.画抛物线y=ax2时,应先列表,再描点,最后连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。
二次函数解析式的几种形式

(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).

(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).

(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.

说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点.

(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和

x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).

求抛物线的顶点、对称轴、最值的方法

①配方法:将解析式化为y=a(x-h)2+k的形式,顶点坐标(h,k),对称轴为直线x=h,若a>0,y有最小值,当x=h时,y最小值=k,若a<0,y有最大值,当x=h时,y最大值=k.

②公式法:直接利用顶点坐标公式(- , ),求其顶点;对称轴是直线x=- ,若a>0,y有最小值,当x=- 时,y最小值= ,若a<0,y有最大值,当x=- 时,y最大值= .

6.二次函数y=ax2+bx+c的图像的画法

因为二次函数的图像是抛物线,是轴对称图形,所以作图时常用简化的描点法和五点法,其步骤是:

(1)先找出顶点坐标,画出对称轴;

(2)找出抛物线上关于对称轴的四个点(如与坐标轴的交点等);

(3)把上述五个点按从左到右的顺序用平滑曲线连结起来.

⑶ 初中数学函数练习题(大集合)

中考数学复习中考冲刺课程-WLL刷光二次函数题型(mp4视频)
链接: https://pan..com/s/1aKlXcxn8rQ06_1qvpyfIqA

提取码: j4ur
若资源有问题欢迎追问~

⑷ 初中三角函数的知识点有哪些,怎么学习

初中数学锐角三角函数通常作为选择题,填空题和应用题压轴题出现,考察同学们灵活运用公式和定理能力,是中考一大难点之一。初中数学锐角三角函数知识点一览:锐角三角函数定义,正弦(sin),余弦(cos)和正切(tan)介绍,锐角三角函数公式(特殊三角度数的特殊值,两角和公式半角公式,和差化积公式),锐角三角函数图像和性质,锐角三角函数综合应用题。
一、锐角三角函数定义
锐角三角函数是以锐角为自变量,以此值为函数值的函数。如图:我们把锐角∠A的正弦、余弦、正切和余切都叫做∠A的锐角函数。
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。初中数学主要考察正弦(sin),余弦(cos)和正切(tan)。
正弦(sin)等于对边比斜边;sinA=a/c
余弦(cos)等于邻边比斜边;cosA=b/c
正切(tan)等于对边比邻边;tanA=a/b
余切(cot)等于邻边比对边;cotA=b/a
二、锐角三角函数公式
关于初中三角函数公式,在考试中用的最多的就是特殊三角度数的特殊值。如:
sin30°=1/2
sin45°=√2/2
sin60°=√3/2
cos30°=√3/2
cos45°=√2/2
cos60°=1/2
tan30°=√3/3
tan45°=1
tan60°=√3[1]
cot30°=√3
cot45°=1
cot60°=√3/3
其次就是两角和公式,这是在初中数学考试中问答题中容易用到的三角函数公式。两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
除了以上常考的初中三角函数公示之外,还有半角公式和和差化积公式也在选择题中用到。所以同学们还是要好好掌握。
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB - ctgA+ctgBsin(A+B)/sinAsinB 三、锐角三角函数图像和性质
四、锐角三角函数综合应用题
已知:一次函数y=-2x+10的图象与反比例函数y=k/x(k>0)的图象相交于A,B两点(A在B的右侧).
(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;
(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当A(a,-2a+10),B(b,-2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若BC/BD=5/2,求△ABC的面积.
考点:
反比例函数综合题;待定系数法求一次函数解析式;反比例函数与一次函数的交点问题;相似三角形的判定与性质.
解答:
解:(1)把A(4,2)代入y=k/x,得k=4×2=8.
∴反比例函数的解析式为y=8/x.
解方程组y=2x+10
y=8/x,得x=1 y=8
或x=4 y=2,
∴点B的坐标为(1,8);
(2)①若∠BAP=90°,
过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,
对于y=-2x+10,
当y=0时,-2x+10=0,解得x=5,
∴点E(5,0),OE=5.
∵A(4,2),∴OH=4,AH=2,
∴HE=5-4=1.
∵AH⊥OE,∴∠AHM=∠AHE=90°.
又∵∠BAP=90°,
∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,
∴∠MAH=∠AEM,
∴△AHM∽△EHA,
∴AH/EH=MH/AH,
∴2/1=MH/2,
∴MH=4,
∴M(0,0),
可设直线AP的解析式为y=mx
则有4m=2,解得m=1/2,
∴直线AP的解析式为y=1/2x,
解方程组y=1/2x,
y=8/x,得x=4 y=2
或x=?4 y=?2,
∴点P的坐标为(-4,-2).
②若∠ABP=90°,
同理可得:点P的坐标为(-16,-1/2).
综上所述:符合条件的点P的坐标为(-4,-2)、(-16,-1/2);
(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,
则有BS∥CT,∴△CTD∽△BSD,
∴CD/BD=CT/BS.
∵BC/BD=5/2,
∴CT/BS=CD/BD=3/2.
∵A(a,-2a+10),B(b,-2b+10),
∴C(-a,2a-10),CT=a,BS=b,
∴a/b=3/2
,即b=2/3a.
∵A(a,-2a+10),B(b,-2b+10)都在反比例函数y=k/x的图象上,
∴a(-2a+10)=b(-2b+10),
∴a(-2a+10)=2/3
a(-2×2/3a+10).
∵a≠0,
∴-2a+10=2/3
(-2×2/3a+10),
解得:a=3.
∴A(3,4),B(2,6),C(-3,-4).
设直线BC的解析式为y=px+q,
则有2p+q=6
?3p+q=?4,
解得:p=2q=2,
∴直线BC的解析式为y=2x+2.
当x=0时,y=2,则点D(0,2),OD=2,
∴S△COB=S△ODC+S△ODB=1/2
ODCT+1/2ODBS=1/2×2×3+1/2×2×2=5.
∵OA=OC,
∴S△AOB=S△COB,
∴S△ABC=2S△COB=10. 以上就是初中数学锐角三角函数知识点总结,小编推荐同学继续浏览《初中数学知识点专题汇总》。对于想要通过参加初中数学补习班来获得优质的数学学习资源和学习技巧,使自身成绩有所提升的同学,昂立新课程推荐以下课程:

初二数学双师定向尖子班

初二数学名师网络辅导课

初三数学定向尖子班
初三数学名师网络辅导课

中考数学自招名师网课
(以上课程是热门推荐课程,更多相关课程,可登陆官网浏览。)
初中数学学习课程分网络和面授,有小班制,大班制,1对1,1对3形式,授课校区分布在上海各个地域,面授班课时以昂立新课程官网颁布课时为主,具体费用可咨询在线客服或拨打热线4008-770-970。

⑸ 请帮忙总结初中数学函数知识点

好好看看课本,学会总结,别愁,一旦自己整理出来,你也就记住了,要耐心

⑹ 初中数学复习资料

初中数学合集网络网盘下载

链接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234 提取码:1234

简介:初中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

⑺ 初中数学函数知识点。

以下是一些知识点供你参考,如果想要一些题得话,你可以在网络文库里面搜索初中函数知识点,里面有不少呢~! 祝学习进步~! 函数及其图像 一、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x轴和y轴上的点,不属于任何象限。 二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 第一象限(+,+) 第二象限(-,+) 第三象限(-,-) 第四象限(+,-) 2、坐标轴上的点的特征 在x轴上纵坐标为0 , 在y轴上横坐标为, 原点坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上 x与y相等 点P(x,y)在第二、四象限夹角平分线上 x与y互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x轴的直线上的各点的纵坐标相同。 位于平行于y轴的直线上的各点的横坐标相同。 5、关于x轴、y轴或远点对称的点的坐标的特征 点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数 点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数 点P与点p’关于原点对称 横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)到x轴的距离等于 (2)到y轴的距离等于 (3)到原点的距离等于 三、函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。 2、函数的三种表示法(1)解析法(2)列表法(3)图像法 3、由函数解析式画其图像的一般步骤(1)列表(2)描点(3)连线 4、自变量取值范围 四、正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果 (k,b是常数,k 0),那么y叫做x的一次函数。 特别地,当一次函数 中的b为0时, (k为常数,k 0)。这时,y叫做x的正比例函数。 2、一次函数的图像:是一条直线 3、正比例函数的性质,,一般地,正比例函数 有下列性质: (1)当k>0时,图像经过第一、三象限,y随x的增大而增大; (2)当k0时,y随x的增大而增大 (2)当k0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x 的增大而减小。 (2)当k0抛物线开口向上,对称轴是x= ,顶点坐标是( , );在对称轴的左侧,即当x 时,y随x的增大而增大;抛物线有最低点,当x= 时,y有最小值, (2) a 时,y随x的增大而减小,; 抛物线有最高点,当x= 时,y有最大值, 4、.二次函数的解析式有三种形式: (1)一般式: (2)顶点式: (3)两根式: 5、抛物线 中, 的作用: 表示开口方向: >0时,抛物线开口向上,,, 0时,图像与x轴有两个交点; 当 =0时,图像与x轴有一个交点; 当

⑻ 初中数学函数相关全部知识点

初中数学知识点归纳(口诀)——函数
正比例函数的鉴别
判断正比例函数,检验当分两步走。
一量表示另一量,
有没有。
若有再去看取值,全体实数都需要。
区分正比例函数,衡量可分两步走。
一量表示另一量,
是与否。
若有还要看取值,全体实数都要有。
正比例函数的图象与性质
正比函数图直线,经过
和原点。
k正一三负二四,变化趋势记心间。
k正左低右边高,同大同小向爬山。
k负左高右边低,一大另小下山峦。
一次函数
一次函数图直线,经过
点。
k正左低右边高,越走越高向爬山。
k负左高右边低,越来越低很明显。

⑼ 初中数学知识点及精选试题

精选试题
1、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被()整除。
A. 111 B. 1000 C. 1001 D. 1111
解:依题意设六位数为 ,则 =a×105+b×104+c×103+a×102+b×10+c=a×102(103+1)+b×10(103+1)+c(103+1)=(a×103+b×10+c)(103+1)=1001(a×103+b×10+c),而a×103+b×10+c是整数,所以能被1001整除。故选C
方法二:代入法
2、若 ,则S的整数部分是____________________
解:因1981、1982……2001均大于1980,所以 ,又1980、1981……2000均小于2001,所以 ,从而知S的整数部分为90。

3、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n个(n≤100)学生进来,凡号码是n的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着。
解:首先,电灯编号有几个正约数,它的开关就会被拉几次,由于一开始电灯是关的,所以只有那些被拉过奇数次的灯才是亮的,因为只有平方数才有奇数个约数,所以那些编号为1、22、32、42、52、62、72、82、92、102共10盏灯是亮的。

4、某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是 ()
A. m(1+a%)(1-b%)元 B. m•a%(1-b%)元
C. m(1+a%)b%元 D. m(1+a%b%)元
解:根据题意,这批衬衣的零售价为每件m(1+a%)元,因调整后的零售价为原零售价的b%,所以调价后每件衬衣的零售价为m(1+a%)b%元。
应选C
5、如果a、b、c是非零实数,且a+b+c=0,那么 的所有可能的值为 ()
A. 0 B. 1或-1 C. 2或-2 D. 0或-2

解:由已知,a,b,c为两正一负或两负一正。
①当a,b,c为两正一负时:

②当a,b,c为两负一正时:

由①②知 所有可能的值为0。
应选A

6、在△ABC中,a、b、c分别为角A、B、C的对边,若∠B=60°,则 的值为 ()
A. B.
C. 1 D.
解:过A点作AD⊥CD于D,在Rt△BDA中,则于∠B=60°,所以DB= ,AD= 。在Rt△ADC中,DC2=AC2-AD2,所以有(a- )2=b2- C2,整理得a2+c2=b2+ac,从而有
应选C

7、设a<b<0,a2+b2=4ab,则 的值为 ()
A. B. C. 2 D. 3
解:因为(a+b)2=6ab,(a-b)2=2ab,由于a<b<0,得 ,故 。
应选A
8.已知a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式a2+b2+c2-ab-bc-ca的值为 ()
A. 0 B. 1 C. 2 D. 3

9、已知abc≠0,且a+b+c=0,则代数式 的值是 ()
A. 3 B. 2 C. 1 D. 0

10、某商品的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降价的百分数)不得超过d%,则d可用p表示为_____
解:设该商品的成本为a,则有a(1+p%)(1-d%)=a,解得

11、已知实数z、y、z满足x+y=5及z2=xy+y-9,则x+2y+3z=_______________
解:由已知条件知(x+1)+y=6,(x+1)•y=z2+9,所以x+1,y是t2-6t+z2+9=0的两个实根,方程有实数解,则△=(-6)2-4(z2+9)=-4z2≥0,从而知z=0,解方程得x+1=3,y=3。所以x+2y+3z=8

12.气象爱好者孔宗明同学在x(x为正整数)天中观察到:①有7个是雨天;②有5个下午是晴天;③有6个上午是晴天;④当下午下雨时上午是晴天。则x等于()
A. 7 B. 8 C. 9 D. 10
选C。设全天下雨a天,上午晴下午雨b天,上午雨下午晴c天,全天晴d天。由题可得关系式a=0①,b+d=6②,c+d=5③,a+b+c=7④,②+③-④得2d-a=4,即d=2,故b=4,c=3,于x=a+b+c+d=9。

13、有编号为①、②、③、④的四条赛艇,其速度依次为每小时 、 、 、 千米,且满足 > > > >0,其中, 为河流的水流速度(千米/小时),它们在河流中进行追逐赛规则如下:(1)四条艇在同一起跑线上,同时出发,①、②、③是逆流而上,④号艇顺流而下。(2)经过1小时,①、②、③同时掉头,追赶④号艇,谁先追上④号艇谁为冠军,问冠军为几号?
解:出发1小时后,①、②、③号艇与④号艇的距离分别为

各艇追上④号艇的时间为

对 > > > 有 ,即①号艇追上④号艇用的时间最小,①号是冠军。

14.有一水池,池底有泉水不断涌出,要将满池的水抽干,用12台水泵需5小时,用10台水泵需7小时,若要在2小时内抽干,至少需水泵几台?

解:设开始抽水时满池水的量为 ,泉水每小时涌出的水量为 ,水泵每小时抽水量为 ,2小时抽干满池水需n台水泵,则

由①②得 ,代入③得:
∴ ,故n的最小整数值为23。
答:要在2小时内抽干满池水,至少需要水泵23台

15.某宾馆一层客房比二层客房少5间,某旅游团48人,若全安排在第一层,每间4人,房间不够,每间5人,则有房间住不满;若全安排在第二层,每3人,房间不够,每间住4人,则有房间住不满,该宾馆一层有客房多少间?

解:设第一层有客房 间,则第二层有 间,由题可得

由①得: ,即
由②得: ,即
∴原不等式组的解集为
∴整数 的值为 。
答:一层有客房10间。

16、某生产小组开展劳动竞赛后,每人一天多做10个零件,这样8个人一天做的零件超过200个,后来改进技术,每人一天又多做27个零件,这样他们4个人一天所做零件就超过劳动竞赛中8个人做的零件,问他们改进技术后的生产效率是劳动竞赛前的几倍?
解:设劳动竞赛前每人一天做 个零件
由题意
解得
∵ 是整数∴ =16
(16+37)÷16≈3.3
故改进技术后的生产效率是劳动竞赛前的3.3倍。

⑽ 初中数学函数有哪些知识点

有理数 整式 一元一次方程 一元二次方程(组)不等式 实数 分式 一次函数 反比例函数 因式分解 二次函数 一元二次方程 四边形 相似 解三角函数 圆 概率 统计 等等