1. 初三上册数学知识点归纳
初三数学知识点 第一章 二次根式 1 二次根式:形如a
(0a)的式子为二次根式;
性质:a
(0a)是一个非负数;
02
aaa
;
02
aaa
。
2 二次根式的乘除: 0,0
baabba;
0,0
bab
ab
a。
3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。
4 海伦-秦九韶公式:)
)()((cpbpppS
,S是三角形的面积,
p为2
c
bap
。
第二章 一元二次方程
1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。
2 一元二次方程的解法
配方法:将方程的一边配成完全平方式,然后两边开方; 公式法:a
acbbx242
因式分解法:左边是两个因式的乘积,右边为零。 3 一元二次方程在实际问题中的应用
4 韦达定理:设21,xx是方程02cbxax的两个根,那么有
初三全科目课件教案习题汇总语文数学英语物理化学
a
cxxa
bxx
2121
,
第三章 旋转 1 图形的旋转
旋转:一个图形绕某一点转动一个角度的图形变换 性质:对应点到旋转中心的距离相等;
对应点与旋转中心所连的线段的夹角等于旋转角 旋转前后的图形全等。
2 中心对称:一个图形绕一个点旋转180度,和另一个图
形重合,则两个图形关于这个点中心对称;
中心对称图形:一个图形绕某一点旋转180度后得到的
图形能够和原来的图形重合,则说这个图形是中心对称图形;
3 关于原点对称的点的坐标 第四章 圆
1 圆、圆心、半径、直径、圆弧、弦、半圆的定义 2 垂直于弦的直径
圆是轴对称图形,任何一条直径所在的直线都是它
的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧; 平分弦的直径垂直弦,并且平分弦所对的两条弧。 3 弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所
对的弦也相等。
4 圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等
于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角
所对的弦是直径。
5 点和圆的位置关系 点在
rd
点在圆上 d=r 点在圆内 d<r
定理:不在同一条直线上的三个点确定一个圆。 三角形的外接圆:经过三角形的三个顶点的圆,外接圆的
圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。
6直线和圆的位置关系 相交 d<r 相切 d=r 相离 d>r
切线的性质定理:圆的切线垂直于过切点的半径; 切线的判定定理:经过圆的外端并且垂直于这条半径的直
线是圆的切线;
切线长定理:从圆外一点引圆的两条切线,它们的切线长
相等,这一点和圆心的连线平分两条切线的夹角。
三角形的内切圆:和三角形各边都相切的圆为它的内切圆,
圆心是三角形的三条角平分线的交点,为三角形的内心。
7 圆和圆的位置关系
外离 d>R+r 外切 d=R+r 相交 R-r<d<R+r 内切 d=R-r 内含 d<R-r 8 正多边形和圆
正多边形的中心:外接圆的圆心 正多边形的半径:外接圆的半径 正多边形的中心角:没边所对的圆心角 正多边形的边心距:中心到一边的距离 9 弧长和扇形面积 弧长 180
rnl
扇形面积:360
2
rnS
10 圆锥的侧面积和全面积 侧面积: 全面积
11 (附加)相交弦定理、切割线定理
第五章 概率初步
1 概率意义:在大量重复试验中,事件A发生的频率nm
稳定在
某个常数p附近,则常数p叫做事件A的概率。
2 用列举法求概率
一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=
n
m
2. 数学初三知识点归纳有哪些
数学初三知识点如下:
1、含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。2、同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
3、使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
4、若已知函数图像与x轴的两个交点坐标,可设为交点式。
5、一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。
3. 人教版初中数学上册第一单元知识重点
我是哈尔滨的,不知道和你学的一不一样.
初一(上) 分数除法
第一课 分数除法
1.1.1 分数除法的意义
知道分数除法的意义与整数除法意义相同,都是已知两个因数的积和其中一个因数,丘陵一个因数的运算。
1.1.2 分数除以整数
知道分数除以整数(0除外)等于分数乘这个证书的倒数。
第二课 分数四则混合运算
分数四则运算顺序与整数相同。,也可用整数运算定律使计算简便。
第三课 解决问题
就是学会用分数除法解决应用题。
第四课 比和比的应用
1.4.1 比的意义
1.两个数相除又叫做两个数的比。
2.在两个数的比中,比好前面的数叫前项,比号后面的数叫比的后项。比的前项除以后项所得的商叫比值。例;15(前项):10(后项)=15/10=3/2(比值)
1.4.2 比的基本性质
.1.比的前项和后项同时乘或除以相同的数(0除外),比值不变,这一规律是比的基本性质。
1..4.3 比的应用
学会用比解决实际问题。
(如还有问题,欢迎追问。)
4. 初三的数学知识点
一、相似三角形(7个考点)
考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5:三角形的重心
考核要求:知道重心的定义并初步应用。
二、锐角函数值(2个考点)
考点7:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点8:解直角三角形及其应用
考核要求:
(1)理解解直角三角形的意义;
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
三、二次函数(4个考点)
考点9:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数
考核要求:
(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
考点10:用待定系数法求二次函数的解析式
考核要求:
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点11:画二次函数的图像
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
考点12:二次函数的图像及其基本性质
考核要求:
(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要
5. 人教版初三数学知识点
http://wenku..com/view/759f9e44336c1eb91a375df7.html
6. 人教版初中数学所学的所有知识点归纳
常见的初中数学公式
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
(还有一些,大家帮补充吧)
7. 人教版初三上册数学各章节重要知识点归纳(推荐下载)
主要知识点二次根式。
一般地,形如√a的代数式叫做二次根式,其中,a叫做被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。
判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。
最简二次根式
最简二次根式条件:
1、被开方数的因数是整数或字母,因式是整式;
2、被开方数中不含有可化为平方数或平方式的因数或因式。
以上资料参考:网络-二次根式
8. 人教版【初中数学】知识点总结-全面整理(超全)
《初中数学|升级版人教版初中数学七年级下册》网络网盘资源免费下载
链接:https://pan..com/s/1Aqd2mzuHw21jbIBsyK9EUQ
初中数学|升级版人教版初中数学七年级下册|升级版人教版初中数学七年级上册|升级版人教版初中数学九年级下册|升级版人教版初中数学九年级上册|升级版人教版初中数学八年级下册|升级版人教版初中数学八年级上册|人教版初中数学7年级上册|数学初中2上15.4因式分解(一).rmvb|数学初中2上15.4因式分解(二).rmvb|数学初中2上15.3同底数幂的除法.rmvb|数学初中2上15.2乘法公式.rmvb|数学初中2上15.1整式的乘法(一).rmvb|数学初中2上15.1整式的乘法(二).rmvb|数学初中2上14.4选择方案(一).rmvb
9. 能给我人教版九年级数学的知识点吗
教版初中数学定理知识点汇总[九年级(上册)
第一章 证明(二)
※等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。
※等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的
直角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半。
※有一个角等于60º的等腰三角形是等边三角形。
※如果知道一个三角形为直角三角形首先要想的定理有:
①勾股定理: (注意区分斜边与直角边)
②在直角三角形中,如有一个内角等于30º,那么它所对的直角边等于斜边的一半
③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现)
※垂直平分线是垂直于一条线段并且平分这条线段的直线。(注意着重号的意义)
<直线与射线有垂线,但无垂直平分线>
※线段垂直平分线上的点到这一条线段两个端点距离相等。
※线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
※三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。(如图1所示,AO=BO=CO)
我这里还有课件,比较全面的,想要的话联系我。
※角平分线上的点到角两边的距离相等。
※角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。
角平分线是到角的两边距离相等的所有点的集合。
※三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。
(如图2所示,OD=OE=OF)
第二章 一元二次方程
※只含有一个未知数的整式方程,且都可以化为 (a、b、c为
常数,a≠0)的形式,这样的方程叫一元二次方程。
※把 (a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。
※解一元二次方程的方法:①配方法 <即将其变为 的形式>
②公式法 (注意在找abc时须先把方程化为一般形式)
③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)
※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;
②将二次项系数化成1;
③把常数项移到方程的右边;
④两边加上一次项系数的一半的平方;
⑤把方程转化成 的形式;
⑥两边开方求其根。
※根与系数的关系:当b2-4ac>0时,方程有两个不等的实数根;
当b2-4ac=0时,方程有两个相等的实数根;
当b2-4ac<0时,方程无实数根。
※如果一元二次方程 的两根分别为x1、x2,则有: 。
※一元二次方程的根与系数的关系的作用:
(1)已知方程的一根,求另一根;
(2)不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:
① ② ③
④ ⑤
⑥ ⑦其他能用 或 表达的代数式。
(3)已知方程的两根x1、x2,可以构造一元二次方程:
(4)已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程 的根
※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。
※处理问题的过程可以进一步概括为:
第三章 证明(三)
※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个距离称为平行线之间的距离。
菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)
※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)
※正方形常用的判定:有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形;
对角线相等的菱形是正方形;
对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):
※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
※两条腰相等的梯形叫做等腰梯形。
※一条腰和底垂直的梯形叫做直角梯形。
※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
※三角形的中位线平行于第三边,并且等于第三边的一半。
※夹在两条平行线间的平行线段相等。
※在直角三角形中,斜边上的中线等于斜边的一半
第四章 视图与投影
※三视图包括:主视图、俯视图和左视图。
三视图之间要保持长对正,高平齐,宽相等。一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。
主视图:基本可认为从物体正面视得的图象
俯视图:基本可认为从物体上面视得的图象
左视图:基本可认为从物体左面视得的图象
※视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。
※在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。
※在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。
物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影。
太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影。
探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影。
※区分平行投影和中心投影:①观察光源;②观察影子。
眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区。
※从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影。
①点在一个平面上的投影仍是一个点;
②线段在一个面上的投影可分为三种情况:
线段垂直于投影面时,投影为一点;
线段平行于投影面时,投影长度等于线段的实际长度;
线段倾斜于投影面时,投影长度小于线段的实际长度。
③平面图形在某一平面上的投影可分为三种情况:
平面图形和投影面平行的情况下,其投影为实际形状;
平面图形和投影面垂直的情况下,其投影为一线段;
平面图形和投影面倾斜的情况下,其投影小于实际的形状。
第五章 反比例函数
※反比例函数的概念:一般地, (k为常数,k≠0)叫做反比例函数,即y是x的反比例函数。
(x为自变量,y为因变量,其中x不能为零)
※反比例函数的等价形式:y是x的反比例函数 ←→ ←→ ←→ ←→ 变量y与x成反比例,比例系数为k.
※判断两个变量是否是反比例函数关系有两种方法:①按照反比例函数的定义判断;②看两个变量的乘积是否为定值<即 >。(通常第二种方法更适用)
※反比例函数的图象由两条曲线组成,叫做双曲线
※反比例函数的画法的注意事项:①反比例函数的图象不是直线,所“两点法”是不能画的;
②选取的点越多画的图越准确;
③画图注意其美观性(对称性、延伸特征)。
※反比例函数性质:
①当k>0时,双曲线的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;
②当k<0时,双曲线的两支分别位于二、四象限;在每个象限内,y随x的增大而增大;
③双曲线的两支会无限接近坐标轴(x轴和y轴),但不会与坐标轴相交。
※反比例函数图象的几何特征:(如图4所示)
点P(x,y)在双曲线上都有
第六章 频率与概率
※在频率分布表里,落在各小组内的数据的个数叫做频数;
每一小组的频数与数据总数的比值叫做这一小组的频率; 即:
在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于1。因此,各个小长方形的面积的和等于1。
※频率分布表和频率分布直方图是一组数据的频率分布的两种不同表示形式,前者准确,后者直观。
用一件事件发生的频率来估计这一件事件发生的概率。
可用列表的方法求出概率,但此方法不太适用较复杂情况。
※假设布袋内有m个黑球,通过多次试验,我们可以估计出布袋内随机摸出一球,它为白球的概率;
※要估算池塘里有多少条鱼,我们可先从池塘里捉上100条鱼做记号,再放回池塘,之后再从池塘中捉上200条鱼,如果其中有10条鱼是有标记的,再设池塘共有x条鱼,则可依照 估算出鱼的条数。(注意估算出来的数据不是确切的,所以应谓之“约是XX”)
※生活中存在大量的不确定事件,概率是描述不确定现象的数学模型,它能准确地衡量出事件发生的可能性的大小,并不表示一定会发生。