当前位置:首页 » 基础知识 » 初一数学上册第三单元知识点讲解
扩展阅读
酷我音乐中的歌词怎么写 2024-11-02 02:06:42
儿童滑步车调多少合适 2024-11-02 02:00:57

初一数学上册第三单元知识点讲解

发布时间: 2022-08-05 10:10:58

⑴ 初一数学上册知识点

第一章 有理数
1.正数和负数
2.有理数
3.有理数的加减
4.有理数的乘除
5.有理数的乘方
重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字
难点:绝对值
易错点:绝对值、有理数计算
中考必考:科学计数法、相反数(选择题)
第二章 整式的加减
1.整式
2.整式的加减
重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减
难点:单项式与多项式的系数和次数的确定、合并同类项
易错点:合并同类项、计算失误、整数次数的确定
中考必考:同类项、整数系数次数的确定、整式加减
第三章 一元一次方程
1.从算式到方程
2.解一元一次方程——合并同类项与移项
3.解一元一次方程——去括号去分母
4.实际问题与一元一次方程
重点:一元一次方程(定义、解法、应用)
难点:一元一次方程的解法(步骤)
易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系
第四章 图形认识实步
1.多姿多彩的图形
2.直线、射线、线段
3.角
4.课题实习——设计制作长方形形状的包装纸盒
重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等
难点:中点和角平分线的相关计算、余角和补角的应用
易错点:等量关系不会转化、审题不清

⑵ 初一数学第三单元知识点

1:字母能表示什么
2:代数式
3:代数式求值
4:合并同类项
5:去括号
6:探索规侓
我相信你能学好,放松地学,不要怕!

⑶ 初一上册数学简单讲述知识点

第一章
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。

第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。

⑷ 初一上册数学人教版知识要点归纳总结

初一数学上册复习教学知识点归纳总结

一:有理数
知识网络:
概念、定义:
1、大于0的数叫做正数(positive number)。
2、在正数前面加上负号“-”的数叫做负数(negative number)。
3、整数和分数统称为有理数(rational number)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7、 由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则
减去一个数,等于加上这个数的相反数。
14、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、 一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则
除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
21、 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)
22、根据有理数的乘法法则可以得出
负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
23、做有理数混合运算时,应注意以下运算顺序:
(1)先乘方,再乘除,最后加减;
(2) 同级运算,从左到右进行;
(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
24、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)

注:黑体字为重要部分
二:整式的加减
知识网络:
概念、定义:
1、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。
2、单项式中的数字因数叫做这个单项式的系数(coefficient)。
3、 一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。
4、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly
term)。
5、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。
6、把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
三:一元一次方程
知识网络:
概念、定义:
1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。
2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。
3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
6、把等式一边的某项变号后移到另一边,叫做移项。
7、应用:行程问题:s=v×t 工程问题:工作总量=工作效率×时间
盈亏问题:利润=售价-成本 利率=利润÷成本×100%
售价=标价×折扣数×10% 储蓄利润问题:利息=本金×利率×时间
本息和=本金+利息
三:图形初步认识
知识网络:
概念、定义:
1、 我们把实物中抽象的各种图形统称为几何图形(geometric figure)。
2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure)。
3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure)。
4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net)。
5、几何体简称为体(solid)。
6、包围着体的是面(surface),面有平的面和曲的面两种。
7、面与面相交的地方形成线(line),线和线相交的地方是点(point)。
8、点动成面,面动成线,线动成体。
9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。
简述为:两点确定一条直线(公理)。
10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection)。
11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center)。
12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)
13、连接两点间的线段的长度,叫做这两点的距离(distance)。
14、角∠(angle)也是一种基本的几何图形。
15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector)。
17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary
angle),即其中的每一个角是另一个角的余角。
18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementary
angle),即其中一个角是另一个角的补角
19、等角的补角相等,等角的余角相等。

⑸ 初一上册数学复习资料

《初中数学华师大版七年级上册》网络网盘免费资源下载

链接: https://pan..com/s/1bqeovtCC8e9k6ShcnIq9oA

?pwd=y83e 提取码: y83e

⑹ 七年级上册数学第三单元归纳知识点

七年级数学(上)第三单元测试卷
(时间90分钟满分100分)
班级学号 姓名得分
一、填空题(每题2分,共32分)
1.在① ;② ;③ ;④ 中,等式有_______,方程有_______.(填入式子的序号)
2.如果 ,那么a=,其根据是.
3.方程 的解是 _______.
4.当x=时,代数式 的值是 .
5.已知等式 是关于x的一元一次方程,则m=____________.
6.当x=时,代数式 与代数式 的值相等.
7.根据“ 的 倍与 的和比 的 小 ”,可列方程为______ _.
8.若 与 有相同的解,那么 _______.
9.关于方程 的解为___________________________.
10.若关于x的方程 的解是 ,则代数式 的值是_________.
11.代数式 与 互为相反数,则 .
12.已知三个连续奇数的和是 ,则中间的那个数是_______.
13.某工厂引进了一批设备,使今年单位成品的成本较去年降低了 .已知今年单位成品的成本为 元,则去年单位成品的成本为_______元.
14.小李在解方程 (x为未知数)时,误将 看作 ,解得方程的解 ,则原方程的解为___________________________.
15.假定每人的工作效率都相同,如果 个人 天做 个玩具熊,那么 个人做 个玩具熊需要______天.
16.轮船沿江从A港顺 流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距______千米.
二、解答 题(共68分)
17.解下列方程(每题2分, 共8分)
(1) ;
Com]
(2)
(3)
(4)
18.(6分)老师在黑板上出了一道解方程的题 ,小明马上举手,要求到黑板上做,他是这样做的:
…………………①
………………………②
………………………③
…………………………………④
…………………………………⑤
老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在_________(填编号);
然后,你自己细心地解下面的方程:
(1) (2)
19.(3分)如果方程 的解是 , 求 的值.
20. (3分)已知等式 是关于 的一元一次方程(即 未知),求这个方程的解.
21.(4分)初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,_________________________________?请你将这道作业题补充完整并列出方程解答.
22.( 4分)某人共收集邮票若干张,其中 是2000年以前的国内外发行的邮票, 是2001年国内发行的, 是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.
23.(4分)某商场在元旦期间,开展商品促销活动.将某型号的电视机按进价提高 后,打 折另送 元路费的方式销售,结果每台电视机仍获利 元,问每台电视机的进价是多少元?
24.(6分)某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹出票款6920元,且每张成人票8元,学生票5元.
(1)问成人票与学生票各售出多少张?
(2)若票价不变,仍售出1000张票,所得的票款可能是7290元吗?为什么?
25.(6分)你坐过出租车吗?请你帮小明算一算.杭州市出租车收费标准是:起步价( 千米以内) 元,超过 千米的部分每千米 元,小明乘坐了 千米的路程.
(1)请写出他应该去付费用的表达式;
(2)若他支付的费用是 元,你能算出他乘坐的路程吗?
26.(6分)公园门票价格规定如下表:
购票张数 1~50张 51~100张 100张以上
每张票的价格 13元 11元 9元
某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足5 0人.]
经估算,如果两个班都以班为单位购票,则一共应付1240元,问:
(1)两班各有多少学生?
(2)如果两班联合起来,作为一个团体购票,可省多少钱?
(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?
27.(9分)有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有40m2墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面.每名师傅比徒弟一天多刷30m2的墙面.
(1)求每个房间需要粉刷的墙面面积;
(2)张老板现有36个这样 的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?
(3)已知每名师傅,徒弟每天的工资分别是85元,65元,张老板要求在3天内完成,问如何在这8个人中雇用人员,才合算呢?
28.(9分)某原料供应商对购买其原料的顾客实行如下优惠办法:
(1)一次购买金额不超过1万元,不予优惠;
(2)一次购买金额超过1万元,但不超过3万元,全部9折优 惠;
(3)一次购买的超过3万元,其中3万元9折优惠,超过3万元的部分8折优惠.
某人因库容原因,第一次在供应商处购买原料付7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,则应付款多少元?可少付款多少元?
七年级数学(上)一元一次方程测试
一、填空题
1.②③④,②④2.,等号两边同时加3,等式仍然成立3.4.25.6.7.8.9.或10.11.12.1713.9.614.15.16.21
二、解 答题
17.(1);(2);(3);(4)18.①,(1);(2)19.720.21.略22.152张23.1200元24.(1)成人票640张,学生票360张;(2)不可能25.(1);(2)13千米26:(1):初一(1)班48人,初一(2)班56人;(2):304元;(3):多买3张27.(1)50平方米;(2)5天;(3)师傅2人 ,徒弟6人28.应 付32440元,少付1460元。

⑺ 初一数学人教版上册的知识点500字内容:正数负数、数轴、有理数(不需要有理数的加减法与乘除法)。

初一上册数学知识
第一章 有理数
1正数、负数、有理数、相反数、科学记数法、近似数
2数轴:用数轴来表示数
3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零
4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小 。
5有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加;
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值;
互为相反数的两数相加为零;
一个数加上零,仍得这个数。
6有理数的减法(把减法转换为加法)
减去一个数,等于加上这个数的相反数。
7有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同零相乘,都得零。
乘积是一的两个数互为倒数。
8有理数的除法(转换为乘法)
除以一个不为零的数,等于乘这个数的倒数。
9有理数的乘方
正数的任何次幂都是正数;
零的任何次幂都是负数;
负数的奇次幂是负数,负数的偶次幂是正数。
10混合运算顺序
(1) 先乘方,再乘除,最后加减;
(2) 同级运算,从左到右进行;
(3) 如果有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行。

第二章 整式的加减
1 整式:单项式和多项式的统称;
2整式的加减
(1) 合并同类项
(2) 去括号

第三章 一元一次方程
1 一元一次方程的认识
2 等式的性质
等式两边加上或减去同一个数或者式子,结果仍然相等;
等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
3 解一元一次方程
一般步骤:去分母、去括号、移项、合并同类项、系数化为一
第四章 图形认识初步
1 几何图形:平面图和立体图
2 点、线、面、体
3 直线、射线、线段
两点确定一条直线;
两点之间,线段最短
4 角
角的度量度数
角的比较和运算
补角和余角:等角的补角和余角相等

⑻ 初一上学期数学各章知识点及经典例题

第一册
第一章有理数

1.1正数和负数

以前学过的0以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义

1.2有理数

1.2.1有理数

正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2数轴

规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数

只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4绝对值

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3有理数的加减法

1.3.1有理数的加法

有理数的加法法则:

⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a

三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)

1.3.2有理数的减法

有理数的减法可以转化为加法来进行。

有理数减法法则:

减去一个数,等于加这个数的相反数。

a-b=a+(-b)

1.4有理数的乘除法

1.4.1有理数的乘法

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

两个数相乘,交换因数的位置,积相等。

ab=ba

三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

(ab)c=a(bc)

一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

a(b+c)=ab+ac

数字与字母相乘的书写规范:

⑴数字与字母相乘,乘号要省略,或用“”

⑵数字与字母相乘,当系数是1或-1时,1要省略不写。

⑶带分数与字母相乘,带分数应当化成假分数。

用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。

一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即

ax+bx=(a+b)x

上式中x是字母因数,a与b分别是ax与bx这两项的系数。

去括号法则:

括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。

括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。

括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。

1.4.2有理数的除法

有理数除法法则:

除以一个不等于0的数,等于乘这个数的倒数。

a÷b=a·(b≠0)

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

1.5有理数的乘方

1.5.1乘方

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何正整数次幂都是0。

有理数混合运算的运算顺序:

⑴先乘方,再乘除,最后加减;

⑵同极运算,从左到右进行;

⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行

1.5.2科学记数法

把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

用科学记数法表示一个n位整数,其中10的指数是n-1。

1.5.3近似数和有效数字

接近实际数目,但与实际数目还有差别的数叫做近似数。

精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。

对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

第二章一元一次方程

2.1从算式到方程

2.1.1一元一次方程

含有未知数的等式叫做方程。

只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。

分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

2.1.2等式的性质

等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等。

等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2从古老的代数书说起——一元一次方程的讨论⑴

把等式一边的某项变号后移到另一边,叫做移项。

2.3从“买布问题”说起——一元一次方程的讨论⑵

方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。

解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。

去分母:

⑴具体做法:方程两边都乘各分母的最小公倍数

⑵依据:等式性质2

⑶注意事项:①分子打上括号

②不含分母的项也要乘
2.4再探实际问题与一元一次方程
第三章图形认识初步

3.1多姿多彩的图形

现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。

3.1.1立体图形与平面图形

长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

长方形、正方形、三角形、圆等都是平面图形。

许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

3.1.2点、线、面、体

几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。

包围着体的是面。面有平的面和曲的面两种。

面和面相交的地方形成线。

线和线相交的地方是点。

几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

3.2直线、射线、线段

经过两点有一条直线,并且只有一条直线。

两点确定一条直线。

点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

直线桑一点和它一旁的部分叫做射线。

两点的所有连线中,线段最短。简单说成:两点之间,线段最短。

3.3角的度量

角也是一种基本的几何图形。

度、分、秒是常用的角的度量单位。

把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。

3.4角的比较与运算

3.4.1角的比较

从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。

3.4.2余角和补角

如果两个角的和等于90(直角),就说这两个角互为余角。

如果两个角的和等于180(平角),就说这两个角互为补角。

等角的补角相等。

等角的余角相等。

第四章数据的收集与整理

收集、整理、描述和分析数据是数据处理的基本过程。

4.1喜爱哪种动物的同学最多——全面调查举例

用划记法记录数据,“正”字的每一划(笔画)代表一个数据。

考察全体对象的调查属于全面调查。

4.2调查中小学生的视力情况——抽样调查举例

抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查。

统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式。调查时,可用不同的方法获得数据。除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法。

利用表格整理数据,可以帮助我们找到数据的分布规律。利用统计图表示经过整理的数据,能更直观地反映数据规律。

4.3课题学习调查“你怎样处理废电池?”

调查活动主要包括以下五项步骤:

一、设计调查问卷

⑴设计调查问卷的步骤

①确定调查目的;

②选择调查对象;

③设计调查问题

⑵设计调查问卷时要注意:

①提问不能涉及提问者的个人观点;

②不要提问人们不愿意回答的问题;

③提供的选择答案要尽可能全面;

④问题应简明;

⑤问卷应简短。

二、实施调查

将调查问卷复制足够的份数,发给被调查对象。

实施调查时要注意:

⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;

⑵告诉被调查者你收集数据的目的。

三、处理数据

根据收回的调查问卷,整理、描述和分析收集到的数据。

四、交流

根据调查结果,讨论你们小组有哪些发现和建议?

五、写一份简单的调查报告

第二册

第五章相交线与平行线

5.1相交线

5.1.1相交线

有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

两条直线相交有4对邻补角。

有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。

两条直线相交,有2对对顶角。

对顶角相等。

5.1.2

两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

注意:⑴垂线是一条直线。

⑵具有垂直关系的两条直线所成的4个角都是90。

⑶垂直是相交的特殊情况。

⑷垂直的记法:a⊥b,AB⊥CD。

画已知直线的垂线有无数条。

过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

5.2平行线

5.2.1平行线

在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

在同一平面内两条直线的关系只有两种:相交或平行。

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

5.2.2直线平行的条件

两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。

两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。

两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。

判定两条直线平行的方法:

方法1两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

方法2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

方法3两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

5.3平行线的性质

平行线具有性质:

性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。

判断一件事情的语句叫做命题。

5.4平移

⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。

图形的这种移动,叫做平移变换,简称平移。

第六章平面直角坐标系

6.1平面直角坐标系

6.1.1有序数对

有顺序的两个数a与b组成的数对,叫做有序数对。

6.1.2平面直角坐标系

平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

平面上的任意一点都可以用一个有序数对来表示。

建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。

6.2坐标方法的简单应用

6.2.1用坐标表示地理位置

利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:

⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;

⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;

⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

6.2.2用坐标表示平移

在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。

在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

第七章三角形

7.1与三角形有关的线段

7.1.1三角形的边

由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。

顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。

三角形两边的和大于第三边。

7.1.2三角形的高、中线和角平分线

7.1.3三角形的稳定性

三角形具有稳定性。

7.2与三角形有关的角

7.2.1三角形的内角

三角形的内角和等于180。

7.2.2三角形的外角

三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

三角形的一个外角等于与它不相邻的两个内角的和。

三角形的一个外角大于与它不相邻的任何一个内角。

7.3多边形及其内角和

7.3.1多边形

在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

n边形的对角线公式:

各个角都相等,各条边都相等的多边形叫做正多边形。

7.3.2多边形的内角和

n边形的内角和公式:180(n-2)

多边形的外角和等于360。

7.4课题学习镶嵌

第八章二元一次方程组

8.1二元一次方程组

含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程

把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

8.2消元

由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。

8.3再探实际问题与二元一次方程组
第九章不等式与不等式组

9.1不等式

9.1.1不等式及其解集

用“<”或“>”号表示大小关系的式子叫做不等式。

使不等式成立的未知数的值叫做不等式的解。

能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。

含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

9.1.2不等式的性质

不等式有以下性质:

不等式的性质1不等式两边加(或减)同一个数(或式子),不等号的方向不变。

不等式的性质2不等式两边乘(或除以)同一个正数,不等号的方向不变。

不等式的性质3不等式两边乘(或除以)同一个负数,不等号的方向改变。

9.2实际问题与一元一次不等式

解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式。

9.3一元一次不等式组

把两个不等式合起来,就组成了一个一元一次不等式组。

几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。

对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。

9.4课题学习利用不等关系分析比赛
第十章实数

10.1平方根

如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作“根号a”,a叫做被开方数。

如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。

求一个数a的平方根的运算,叫做开平方。

10.2立方根

如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。

求一个数的立方根的运算,叫做开立方。

10.3实数

无限不循环小数又叫做无理数。

有理数和无理数统称实数。

一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。

⑼ 初一上数学知识点

第一章 有理数
1. 大于0的数叫正数(positive number),在正数前面加上“-”号的是负数(negative number),0既不是正数,也不是负数。
2. 可以写成分数形式的数,都叫做有理数(rational number),正数当作分母为1.
3. 用一条直线上的点表示数,这条直线叫数轴(number axis)。
4. 只有符号不同的两个数叫相反数(opposite number)。
5. 一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
6. 一个正数的绝对值是他本身,一个负数的绝对值是它的相反数,0的绝对值是0.
7. 正数大于0,0大于负数,正数大于负数。
8. 两个负数,绝对值大的反而小。
9. 有理数加法法则:同好两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
10. 两个数相加,交换加数的位置,和不变。(加法交换律)
11. 三个数相加,先把前两个数相加,或先把后两个数相加,和不变。(加法结合律)
12. 减去一个数,等于加上这个数的相反数。a-b=a+(-b)
13. 两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.
14. 乘积是1的两个数互为倒数。
15. 两个数相乘,交换因数的位置,积相等。(乘法交换律)
16. 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(乘法结合律)
17. 一般的,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。(分配率)
18. 除以一个不等于0的数,等于乘这个数的倒数。a/b=a*1/b(b不等于0)
19. 有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照“先乘除,后加减”的顺序。
20. 求 n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power),如an中,a叫做底数(base number),n叫做指数(exponent)。
21. 负数的奇次幂是负数,负数的偶次幂是正数。
22. 正数的任何次幂都是正数,0的任何正整数次幂都是0.
23. 有理数的混合运算:先乘方,再乘除,最后加减:同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
24. 科学记数法:567 000 000=5.67*108.

第二章 整式的加减
1. 单项式(monomial):如数或字母的积的式子,单独的一个数或一个字母也叫单项式。单项式中的数字因数叫做系数(coefficient),如100t,vt,-n中,系数为100,1,-1.
2. 一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a momomial),如100t,字母t的指数是1,100t是一次单项5式,在单项式vt中,字母v与t的指数的和是2,vt是二次单项式。
3. 多项式(polynomial):几个单项式的和。每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly term)。
4. 多项式里次数最高项的次数,叫做这个多项式的次数(degree of polynomial),如2x-3,次数最高的项是一次项2x,这个多项式的次数是1;多项式x2+2x+18中次数最高的项是二次项x2,这个多项式的次数是2.
5. 单项式与多项式统称整式(integral expression)。
6. 所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。
7. 把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
8. 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
9. 整式加减法运算法则:一般的,整式的加减,如果右括号就先去括号,然后再合并同类项。

第三章 一元一次方程
1. 含有未知数的等式叫方程(equation)。
2. 只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程(linear equation with one unknown)。
3. 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
4. 等式两边加(或减)同一个数(或式子),结果仍相等;等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
5. 把等式一边的某项变号后移到另一边,叫做移项。

第四章 图形认识初步
1. 两点确定一条直线。
2. 当两条不同的直线有一个公共点时,就称这两条直线相交(intersection),这个公共点就叫做它们的交点(point of intersection)。
3. 两点之间,线段最短。
4. 连接两点间的线段的长度,就叫这两点的距离(distance)。
5. 从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector)。
6. 如果两个角的和等于90度,就说这两个角互为余角(complementary angle),即其中每一个角是另一个角的余角。
7. 如果两个角的和等于180度,就说这两个角互为补角(supplementary angle),即其中一个角是另一个角的补角。
8. 等角的补角相等,等角的余角相等。

⑽ 初一数学上册各章知识点框架结构

注意:这是北师大版的数学书 人教版和这也差不多

七年级上数学复习提纲
第一章 丰富的图形世界
1、 认识生活中常见的几何体特点:圆柱、圆锥、正方体、长方体、棱柱、球
2、 知道常见几何体的分类,一共分为三类:球体、柱体(圆柱、棱柱、正方体、长方体)、锥体(圆锥、棱锥)
3、 平面图形折成立体图形应注意:侧面的个数与底面图形的边数相等。
4、 圆柱的侧面展开图是一个长方形;展开图是两个圆形和一个长方形;
圆锥的展开图是一个扇形和一个圆形;
正方体展开图是一个六个小正方形组成的图形;
长方体的展开图是与正方体的类似。(容易考到)
5、 特殊立体图形的截面图形:
(1)长方体、正方形的截面是:三角形、四边形(长方形、正方形、梯形、平行四边形)、五边形、六边形。
(2)圆柱的截面是:长方形、圆、椭圆。
(3)圆锥的截面是:三角形、圆、椭圆。
(4)球的截面是:圆
6、我们经常把从前面看到的图形叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图。
7、点动成线,线动成面,面动成体。

第二章 有理数
1 、正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数。
与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。
2 、有理数
(1) 正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。0既不是正数,也不是负数。
(2) 通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、方向箭头、单位长度。
在直线上任取一个点表示数0,这个点叫做原点。
(3) 只有符号不同的两个数叫做互为相反数。
特别的:0的相反数是0
(4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身
一个负数的绝对值是它的相反数;
0的绝对值是0;
两个负数,绝对值大的反而小。
3 、有理数的加减法
(1)有理数加法法则:
①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不相等的异号两数相加,取绝对值较大的数符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加和为0。
③一个数同0相加,仍得这个数。
(2) 有理数减法法则:减去一个数,等于加这个数的相反数。
4、 有理数的乘除法
(1) 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
(2) 乘积是1的两个数互为倒数。
(3) 有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
(4) 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0

第三章、字母表示数
1、用运算符号把数和表示数的字母连接而成的字母叫做代数式。
2、求代数式值要注意:字母的取值必须确保代数式有意义;字母的取值要确保它本身所表示的数量有意义。
3、代数式的系数应包括这一项前的符号;如果代数式的某一项只含有字母因数,它的系数就是1或-1,而不是0。
4、同类项所含的字母相同;相同字母的指数也相同。
注意:同类项与系数无关,与字母的排列顺序无关;几个常数项也是同类项。
5、合并同类项法则:在合并同类项时,把同类项的系数相加,字母和其指数不变。

第四章 平面图形及位置关系
1、直线、射线、线段
(1) 直线、射线、线段的区别:直线没有端点;射线一个端点;线段有两个端点。
(2) 线段公理:两点之间,线段最短。
(3)线段的比较方法:叠和法和度量法。
2、角的度量与表示
角的三种表示方法:用三个大写英文字母表示或用一个大写英文字母表示(如:<ABC,<A);用希腊字母表示(如<β);用数字表示(如<1,<2)
3、 角的比较与运算
(1)角按大小分可分为锐角、直角、钝角、平角、周角。
(2)角平分线把一个角分成两个相等的角,角平分线是一条射线。
4、平行线
(1)如何画平行线?
(2)平行线的性质1:过直线外一点只有一条直线与已知直线平行;
平行线的性质2:两条直线都与第三条直线平行,那么这两条直线也平行。
5、垂直
(1) 如何画垂线?
(2) 垂线的性质1:过一点只有一条直线与已知直线垂直。
垂线的性质2:直线外一点与直线上任意一点的连线中,垂线段最短。
垂直的性质3:是点到直线的距离。

第五章 一元一次方程
1、 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数x,未知数x的指数都是1次,这样的方程叫做一元一次方程。
就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2、等式的性质:
(1). 等式两边加(或减)同一个数(或式子),结果仍相等。
(2) 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3、把等式一边的某项变号后移到另一边,叫做移项。(要移就得变)
4、常用体积公式:
长方形的体积=长X宽X 高 ;
正方形的体积=边长X边长X边长 ;
圆柱的体积=底面积X高 ;
圆锥的体积=底面积X高X1/3。

第六章生活中的数据
1、把一个大于10的数表示成1X10∩的形式(其中1≤a<10,n为正整数),就叫科学计数法。
(从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。)
2、扇形统计图的性质:各扇形占整个圆的百分比之和为1。
3、制作扇形统计图的步骤是什么?
4、各统计图的特点:
(1)扇形统计图能清楚地表示出部分与总体的关系;
(2)折线统计图能清楚地反映数据的趋势;
(3)条形统计图能清楚地表现出数据的多少

第七章 可能性
必然事件:事先能肯定它
确定事件{不可能事件:事先能肯定它一定
事件{不确定事件:事先无法肯定它
1、事情发生的可能性的大小:
机会大的不确定事件不一定发生,机会小的不确定事件也不一定不发生,机会大大小只能说明发生的程度不同。
2、要学会判断事情发生的可能性的大小。