㈠ 怎样构建高中数学知识体系
不需要怎样构建,不像政史地。你做完53就行了
㈡ 初高中数学衔接问题的几点思考
一、初高数学衔接势在必行
据我了解,很多名校很早就提出并着手解决初高数学衔接的问题,并且还开发了具体的校本教材。为什么初高数学衔接如此受到重视,显而易见,高一现在已真正成了学生学习数学的“困难期”,数学两极分化严重,相当一部分同学可能是人生中第一次丧失对数学的信心!第一次有自己是“数学差生”的感觉,并且我们还不能想当然的把“学好高中数学”仅仅定义为班上尖子生的特权,解决好初高数学衔接问题势在必行!
二、问题的根源在哪里?
(1)客观的说,初高中数学知识之间存在断层,正是由于这种断层造成很多同学难以在较短时间内适应高中数学的学习。
根据新课改的理念和课标要求,初中数学教材在难度、深度和广度上有所降低,体现了“浅、少、易”的特点,那些在高中学习中经常用到的知识有的被删除,有的淡化了要求,从而加重了高中数学的负担。就出现了学生在课堂上感觉到老师讲得太快,每节课的容量太大,要求太高,有些初中根本就没有学的知识和方法,在高中直接进行应用,让学生很茫然。
例如:1.立方和与差的公式初中已删去不讲,而高中的运算还在用。
2.因式分解初中一般只限于系数为“1”的二次多项式,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材则应用广泛,如利用因式分解解方程和不等式,以及应用因式分解进行合理变形等。(到高中后,学生解一元二次方程大部分同学用的还是求根公式,不仅解题效率低,并且思维层次不高,不利用对某些含参数的方程进行根的分析)
3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。
4.初中教材对二次函数要求较低,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式(学生很陌生)、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。
5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。
6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。就拿图像的左右平移来说,学生只是在讲二次函数顶点式的时候通过定点坐标的变化来感受左右平移的规律,并未真正理解函数平移的本质,就拿一次函数的左右平移来说,学生大部分都不会,并且初中老师也不会去讲!这不属于考试内容,直接导致到高中后学生对f(x)和f(x+a)的关系弄不清,更谈不上数形结合了。
7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。
8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。
(2)高中数学的呈现方式以及思维方法和初中数学相比急剧突变
1、就呈现方式来说,初中数学教材新知识的引入与学生日常生活实际很贴近,比较形象,并遵循从感性认识上升到理性认识的规律,学生一般都容易理解、接受和掌握,而高中数学一开始,概念抽象,定理严谨,逻辑性强,教材叙述比较严谨、规范,抽象思维和空间想象明显提高,知识难度加大,且习题类型多,解题技巧灵活多变,体现了“起点高、难度大、容量多”的特点。这样,不可避免地造成了学生不适应高中数学学习的情况。
2.高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。因此,初中学习中习惯于这种机械的、便于操作的定势方式,甚至已经产生了依赖心理。高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。当然了,假如辩证的看待这个问题,高中数学思维方式的突变是符合学生心智发展规律的,高中生心智基本已经成熟,也需要从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。关键是老师如何引导学生实现平稳过渡。
(3)以上两方面的原因导致学生学习困难,从而心态也随之发生了变化,甚至某些学生产生了破罐破摔的想法,再加上老师的心理辅导不够及时,自我的调节能力又太弱,从而导致恶性循环发生,从此一蹶不振。
三、初高数学衔接实施的一些具体建议
1、在充分了解学生学情的基础上,编好 “衔接教材”,尽量做到有的放矢,实施过程中要把它当作实实在在的教学内容来讲,不能够轻描淡写!当然了,可以根据需要逐步渗透!
2、在高一刚开始授课时,尽量做到低起点、小步子,缓坡度,稳步子;夯实基础,降低难度,
3、严格控制难度,最大限度调动每个学生的积极性。高一毕竟不同于高三,要循序渐进,要培养学生良好的学习习惯。每次考试的难度可以控制在0.65左右。
3、适时进行高中数学的学法指导和心理辅导,让学生快速适应高中数学的学习模式。
4、教师要摆正心态,不能急躁,讲授概念和方法要耐心、细致!并且还要适时的对学困生进行鼓励,就像我刚开始提到到的,一部分学困生可能是人生中第一次受到这样的打击,第一次有自己是“数学差生”的感觉,老师如果鼓励及时就很有可能会挽救很多这样曾经很辉煌但是现在很落魄的学生!
附录:需要补充或强化的内容
1.数与式的运算:补充立方和(差)公式、两数和(差)立方公式(它是二项定理的最佳接洽点,也即是二项定理的最进发展区。)、三个数的和的平方公式的推导及应用(正用和逆用);强化根式、分式的运算与化简。(二次根式:适当补充相当的运算。如整体运算等)
2.因式分解:补充十字相乘法、分组分解法和添项、拆项法;强化公式法。(十字相乘法和分组分解法。要求是非常熟练。尤其是十字相乘法,它是解一元二次方程最快的方法,当然它也就是解一元二次不等式的最快的方法。)
3.强化一元二次方程的根的判别式及应用;补充一元二次方程的根与系数的关系。
4.补充不等式的解法:包括一元二次不等式及其解法;简单分式不等式的解法;含绝对值的不等式的解法。
5.强化配方法求二次函数的定点和对称轴,强化二次函数的图像和性质,补充二次函数在给定区间上的最值问题。(这是整个高中阶段非常重要的基础问题,可以说,很多综合题的求解,最终都可转化为二次函数在给定区间上的最值问题。)
6.补充一元二次方程根的分布(区间根)。
7.补充简单的二元二次方程组的解法。(初中新课程标准下的数学教材删除了解三元一次方程组和二元二次方程组。当然也就删除了解方程组的基本思想:消元和降次。而这些思想方法在高中是必不可少的,高中的要求是学生能列就能解。)
8.补充可化为一元二次方程的分式方程和无理方程的解法(初中教材删除了可化为一元二次方程的分式方程和无理方程,同时也就删除了用换元法解分式方程和无理方程的思想;删除了分式转整式、无理转有理的重要思想方法)。
9.补充三角形的“四心”的定义及几何性质。
10.补充平面几何有关的定理与性质:包括等比定理、合分比定理;平行线分线段成比例定理;三角形内角平分线定理;三角形外角平分线定理;直角三角形中的射影定理;梯形中位线性质。
11. 补充与圆有关的定理:包括圆内接四边形及其性质定理、垂径定理、弦切角定理、相交弦定理、切割线定理。
12.补充圆内接(外切)正多边形的边长、半径、边心距和中心角的关系;尤其是圆内接(外切)正三角形、正四边形、正六边形的边长、半径、边心距和中心角的关系。
(二)需要补充或强化的数学思想方法
数学方法主要有:(1)配方法(在高中有着相当重要的地位与作用,初中虽也涉及,但还需使学生能熟练掌握配方法的基本过程)。
(2)换元法(也是最基本的数学方法之一,在数学解题中有着不可估量的作用,初中对该方法的训练已大大弱化,高中数学却经常使用)。
(3)待定系数法(作为基本的数学方法初中要求明显降低,高中教学可进行系统的讲授与训练)。(4)反证法。
数学思想主要有:函数方程的思想、数形结合的思想、分类讨论的思想、化归与转化的思想。
其中衔接教学的重点内容是: 十字相乘法、分组分解法和添项、拆项法分解因式;一元二次方程的根与系数的关系;一元二次不等式及其解法;简单分式不等式的解法;含绝对值的不等式的解法;二次函数在给定区间上的最值问题;一元二次方程根的分布;三角形“四心”的定义及几何性质。难点是:添项、拆项法分解因式;简单分式不等式的解法;含绝对值的不等式的解法;二次函数在给定区间上的最值问题;一元二次方程根的分布;三角形内(外)角平分线定理;与圆有关的定理及应用。
㈢ 七年级学生学好数学的关键是什么
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
如何学好数学2
高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。
有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。
至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。
l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1
首先,老师讲课一定要认真听,作业认真完成,这是学好数学的必要条件,它的重要性已不必多说。另外,学校有时会为学生统一订购一些教学辅导书籍,可充分利用。有些超常学生可以加强学习的深度、广度、但基本功--基础知识万万不可忽视。
其次,要注意效率。不作"重复劳动",每次预复习都要有比较明确的目的。在此,我想提出一点:过多的参考书是毫无必要的。看透一本参考书往往优于"看两本书,却均未看透"的情形。着名数学家华罗庚说过:"读一本书,要越读越薄。"这就是说,要抓住统帅全书的基本线索,抓住贯穿全书的精神实质。
这不禁使我想到,我们现在每一个学生在汲取知识的同时,都在为自己编织一张知识网络,其主要作用是串连所学知识,提高学习效率。知识网络应当编织得疏密得当。太疏了,不能使自己的思维四通八达,纵横恣肆;太密了,会影响主线的清晰度,得不偿失。在此不妨举一例:有一位同学,平时学习极其用功,做的数学题极多,但不去理解主旨,几乎把每本参考书中的每句话都当成重点,以求"滴水不漏"。更可悲的是,在重复劳动之中,他从来不将自己冗长的思维有条理的整理出来,请教老师、同学的一些问题也往往很"低级"--自己脑子稍稍转个弯就行了!由于不分主次地学习,不注重培养解题感觉,他的成绩始终上不去,这就是把书"越读越厚"的后果。数学的解题往往灵活多变,每个人解数学题都有自己的解题思路,提高学习效率。
许多数学题都是耐人寻味的。立体几何使我们了解空间的艺术、数学归纳法让我们领略证明的技巧……中国足球队主教练米卢诺维奇崇尚"快乐足球",那么,我们不妨享受数学,体会数学所带来的乐趣。多思考,多享受,多收获,这就是我说的第三点。平时学习中,必须留相当一部分题目给自己充分思考,尤其是难题,哪怕想它一小时甚至更长的时间。解难题,只要经过充分思考,即使没有做出,整个思维过程也是有价值的。因为难题往往综合较大,能力性较强,对解题者连续发散思维的要求较高,所以解题者往往会有一个长时间的探索过程。在整个探索过程中,解题者不断寻找突破口,不断碰壁,不断调整思维功势,不断进展。与此同时,解题者将自己所学到的不少知识、技巧试用一番,起到了很好的复习效果。解题者也通过做题,检验了自己掌握有关知识的程度,便于为此后的学习定下适当的目标。记得在《中学数学》杂志中有一个不等式证明题,颇有难度。我苦思冥想四个小时,终于得出了一个优于参考解答的解法。这令我欣喜若狂,当然也令我对此类不等式问题有了更深的理解。这里顺便提一下,多思考是培养一个人数学综合能力的好方法,但有些同学往往忽视计算能力,疏于实践。尽管考试可以利用计算器,(竞赛中不能使用,)但计算器并不能完成代数式、解析式、三角式等运算。有的时候同学们解题思路正确,只是计算有误,导致最终出错,这是很可惜的。我不擅长解析几何,其中一个原因就是解析几何的计算量大,如果用的方法不好,计算会更繁琐,更容易出现错误。愿读者和我共同努力,使自己具备过硬的计算能力。
除了以上三点,我想,无论是在学习过程中还是在复习迎考阶段,都要注意心态调整。一次考砸了,原因是多方面的,可能是知识未掌握牢固,可能是解题感觉不到位,可能是前面所说的计算错误,可能是状态不佳,可能是特殊原因,也可能是太想考好以致心态失衡。我觉得一个人的心态不应过度地为考分所影响,要时刻记住,充足的积累是发挥稳定的保证。平时刻苦钻研,考前复习中,抽出时间做一定量的中等难度习题,来提高解题熟练程度,并增强信心。考试时保持平静的心情和兴奋的状态,这样就可能爆发出无穷的能量。当然,在任何时刻,还要记住一句话;"只满足于进步,不满足于成功。"
有的同学知识掌握得不错,苦于发散思维能力不强,对此,可针对性地购买一些有关发散思维的同步辅导书籍。(注:本人对书市不甚了解。)我觉得同学们不妨逆向思维,改编甚至自编一些题目,并自己解答。一来可以复习已做过的题目,使自己在解决类似问题时更能熟练应对;二来可以探索性地研究,细微的条件变化能否或如何影响解题过程:此外,还可以初步领略命题思想,以此拓广思路,深化解题思想。
编题目让你更容易举一反三。尽管编一道新题往往比解一道习题困难数倍,但通过编题过程中的发散思维所得到的收获,也往往比做十道题都大。适当抽出少量时间编解题目,也是一个不错的探索学习的方法。
以上是学习心得,仅供参考。有一点需要说明,各人因其不同情况,在无形之中已逐步形成一个适合自己的学习方法,只需适当调整无须刻意改变。其实学数学和学其它学科是可以相互借鉴的。一句话:只要肯动脑筋,事情能做好。
㈣ 如何构建高中数学知识体系
数 学 公 理体系
十九世纪末到二十世纪初,数学已发展成为一门庞大的学科,经典的数学部门已经建立起完整的体系:数论、代数学、几何学、数学分析。数学家开始探访一些基础的问题,例如什么是数?什么是曲线?什么是积分?什么是函数?……另外,怎样处理这些概念和体系也是问题。
经典的方法一共有两类。一类是老的公理化的方法,不过非欧几何学的发展,各种几何学的发展暴露出它的许多毛病;另一类是构造方法或生成方法,这个办法往往有局限性,许多问题的解决不能靠构造。尤其是涉及无穷的许多问题往往靠逻辑、靠反证法、甚至靠直观。但是,哪些靠得住,哪些靠不住,不加分析也是无法断定的。
对于基础概念的分析研究产生了一系列新领域—抽象代数学、拓扑学、泛函分析、测度论、积分论。而在方法上的完善,则是新公理化方法的建立,这是希尔伯特在1899年首先在《几何学基础》中做出的。
㈤ 高中数学全面系统的复习
高中数学复习指导
高三即将毕业,我们高二就是高三了。数学复习已经摆在我们面前了,下面就复习给出一点建议,供大家参考。
一、 基础复习阶段———系统整理,构建数学知识网络
第一轮复习,也称“知识篇”,在这一阶段,老师将带领同学们重温高一、高二所学课程,但这绝不只是以前所学知识的简单重复,而是站在更高的角度,对旧知识产生全新认识的重要过程。因为在高一、高二时,老师是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,你学的往往是零碎的、散乱的知识点,而在第一轮复习时,老师的主线索是知识的纵向联系与横向联系,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,侧重点在于各个知识点之间的融会贯通。平时复习中应重视教材中概念、定理、公式等基础知识、基本技能;同时,更应注重知识的发展形成过程,例题的分析思路,求解过程。在复习中应立足教材、夯实基础,以课本为主,全面梳理知识、方法,注意知识结构的重组与概括。将高中阶段所学的数学知识进行系统整理,用简明的图表形式把基础知识进行有机的串联,构建成知识网络,使学生对整个高中数学体系有一个全面的认识和把握,以便于知识的存储,提取和应用,也有利于学生思维品质的培养和提高,这是数学复习的重要环节。第一轮重点是“三基”(基础知识、基本技能、基本方法)复习,目标是全面、扎实、系统、灵活。学生极易忽视复习课本重要例习题所蕴含的数学思想方法。如上海高考曾出现“解析几何重要思想方法为何”,江苏高考曾出现“用定义法求某函数的导数”等试题。《考试说明》明确指出:易、中、难题的占分比例控制在3:5:2左右,即中低档题占总分的80%左右,这就决定了我们在高考复习中必须抓基础,常抓不懈,只有基础打好了,做中低档题才会概念清楚,得心应手,做难题和综合题才能思路清晰,运算准确。所以大家在复习过程中应做到:
① 立足课本,迅速激活已学过的各个知识点。(建议大家在高三前的一个暑假里通读高一、高二教材)
② 注意所做题目使用知识点覆盖范围的变化,有意识地思考、研究这些知识点在课本中所处的地位和相互之间的联系。注意到老师选题的综合性在不断地加强。
③ 明了课本从前到后的知识结构,将整个知识体系框架化、网络化。
通观高中数学教材,是由一个大陆、一个半岛和一个群岛组成的。这个大陆,就是二维空间的形与数,涉及集合、映射与函数,方程与不等式,数列及其极限,直角坐标系下的点与数对、曲线与方程、曲线的交点、参数方程及相关参数的意义,导数及其应用;这个半岛,是指立体几何。它的体系与平面几何一脉相承,都是古典的公理体系,进行严密的推理论证,且立体几何问题一般都要化归为平面几何问题来加以解决。当然,还要特别关注向量这一工具的作用,总结出利用面向量解决立体几何问题的基本模式。这个群岛,是指离散数学撒在中学教材中的一些珍珠,如排列组合、二项式定理、概率与统计、数学归纳法等。中学数学内容的结构可看作是数与点的集合,数的集合形成了代数式、函数、复数集、排列与组合四大块,点的集合构成了图形,可分为平面图形(平面几何)、空间图形(立体几何)、坐标平面上的图形(解析几何)三大块,每块下面再列出具体的内容和要点,纵向横向联系,这就构成了中学数学知识网络图,如“函数”这部分纵横向联系的知识结构,能提炼解题所用知识点,并说出其出处。
④经常将使用最多的知识点总结起来,研究重点知识所在章节,并了解各章节在课本中的地位和作用。以下列举各章节的重点,供参考.
1.函数与不等式(主体).代数以函数为主干,不等式与函数的结合是“热点’”.
(1)关于函数性质.单调性、奇偶性、周期性(常以三角函数为载体)、对称性及反函数等处处可考.常以具体函数,结合图象的几何直观展开,有时作适当抽象.这种题型较难,而通过找到一个符合条件的常见函数作为解决本题的入手是一个不错的方法.
(2)关于一元二次函数,是重中之重,有关性质及应用的训练要深入、广泛.函数值域(最值),以二次函数或转化为二次函数的值域,待别是含参变量的二次函数值域研究为重点;方法以突出配方、换元和基本不等式法为重点.一元二次方程根的分布与讨论,一元二次不等式解的讨论,二次曲线交点问题,都与一元二次函数,息息相关,在训练中应占较大比重.强化“三个二次式”的复习。
(3)关于不等式证明.与函数联系的不等式证明,与数列联系结合数学归纳法是重点.方法要突出比较法和利用基本不等式的公式法.对于放缩法虽不是高考重点,因历年考题中都或多或少用到放缩法,掌握几种简单的放缩技巧是必要的.证明不等式要善于分析式子结构特征和寻找已知求证之间的差异,从中找到与相关定理的联系来作为解决问题的突破口.
(4)关于解不等式.以熟练掌握一元二次不等式及可化为一元二次不等式的综合题型为目标,突出灵活转化,突出分类讨论.解不等式往往带有字母,需要讨论,还需要掌握转化、数形结合等方法以及函数与方程的思想和八种常见不等式的一般解法。
2.数列(主体).以等差、等比两种基本数列为载体考查数列的通项、求和、极限等为重点.关于抽象数列(用递推关系给出的),不只限定“归纳一证明”,需加强.数列求和的几种方法,如并项、拆项,裂项、错位相减等常用方法必须掌握(注意对q的讨论)。
3.三角(非主体).“调整意见”“对和差化积、积化和差的8个公式,不要求记忆”.考题难度不降.训练中要抓基本公式的熟练运用,突出正用、逆用和变式用. 三角问题主要有两种形式:一是求较为复杂的三角函数表达式的某些性质;二是三角形中有关边角的问题。凡是三角公式变换的问题都可以从分析角、函数类型和式子结构特征这三个方面的差异作为入手及解题的突破口。
4.复数(非主体,文科不考).近几年呈降温趋势.训练题型、方法、难度等达到教材水准即可.
5.立体几何(主体).
突出“空间”、“立体”.即把线线、线面、面面的位置关系考查置于某几何体的情景中.几何体以棱锥、棱柱为重点.棱柱中又以三棱柱、正方体为重点;棱锥以一条侧棱或一个侧面垂直于底面为重点,棱柱和棱锥的结合体也要重视.位置关系以判断或证明垂直为重点,突出三垂线定理及逆定理的灵活运用。
空间角以二面角为重点,强化三垂线定理定角法.空间距以点面距、线面距为重点,二者结合尤为重要.等积转化、等距转化是最常用方法.角、距离的计算最后都转化到一个三角形中进行。
面积、体积计算,解答题涉及棱锥(特别是三棱锥)居多.因为三棱锥体积求法灵活,思路广泛.
6.解析几何(主体).
直线与圆锥曲线的方程、有关性质以及相互位置关系是重要内容。客观题照顾面,解答题应综合,直线与圆锥曲线的位置关系是高考主要题型,突出直线和圆锥曲线的交点、中点、弦长、轨迹是经常考查的问题,含参的范围问题是难点。突出与函数,向量的联系。
二、综合复习阶段———综合深化,掌握数学思想方法
第二轮复习,通常称为“方法篇”。大约从第二学期开学到四月中旬结束。在这一阶段,老师将以方法、技巧为主线,主要研究数学思想方法。在复习中要注重把提高自己的数学能力作为目标,提高逻辑思维能力、运算能力、空间想象能力、分析问题和解决问题的能力、数学探究与创新能力。扩大新视野,完善高考要求的知识结构,优化思维品质,从根本上提高数学素养。这些都是数学复习中必须重点突破的方向与追寻的目标。学数学需要解题,但解题不是数学的全部,数学思想方法是数学的灵魂。不掌握数学思想方法的解题是蛮干,学数学而不解题则是“进了宝山空手而归”,不能掌握数学的真谛。老师的复习,不再重视知识结构的先后次序,而是以提高同学们解决问题、分析问题的能力为目的,提出、分析、解决问题的思路用“配方法、待定系数法、换元法、消元法,数形结合、分类讨论”等方法解决一类问题、一系列问题。第二轮复习一般是专题强化训练,目标在于提高学生解答高考解答题的能力。此阶段学生不应沉迷于套卷演练,而应在教师指导下,以典型例题为载体,以数学思想方法的灵活运用为线索,讲求解题策略,使自己在第一轮复习的基础上进行巩固、完善、综合、提高的重要阶段,要加强对思维品质和综合能力的培养,主要着眼于知识重组,建立完整的知识能力结构,包括学科的方法能力、思维能力、表达能力,但这都必须建立在知识的识记能力基础之上,理解知识的来源及其所蕴含的数学思想、数学方法,把握知识的纵横联系,培养探索研究问题的能力。第二轮复习要培养数学应用意识,学会从材料的情景、问题中去联系理论,能根据题目所给的材料,找到和主干知识的结合点。要学会形成体系和方法,即解题思路,包括对有效信息的提取、解题所需的方法和技巧、对事实材料的分析和判断及对结论的评价和反思等。不讲究方法的“刻苦”无异于蛮干。应该在理清基本概念、基本知识结构的基础上去做题,有时也可以在做题中加深对基础知识的理解。不注意总结解题规律和数学思想方法的解题是低效的,有时甚至是无意义的.同学们应做到:
①主动将有关知识进行必要的拆分、加工重组。找出某个知识点会在一系列题目中出现,某种方法可以解决一类问题。
②分析题目时,由原来的注重知识点,渐渐地向探寻解题的思路、方法转变。
③从现在开始,解题一定要非常规范,俗语说:“不怕难题不得分,就怕每题都扣分”,所以大家务必将解题过程写得层次分明,结构完整。
④适当选做各地模拟试卷和以往高考题,逐渐弄清高考考查的范围和重点。
三、强化复习阶段———强化训练,提高应试实战能力
第三轮复习,大约一个月的时间,也称为“策略篇”。老师主要讲述“选择题的解法、填空题的解法、应用题的解法、探究性命题的解法、综合题的解法、创新性试题的解法”,教给同学们一些解题的特殊方法,特殊技巧,以提高同学们的解题速度和应试策略为目的。第三轮一般进行模拟、强化,目的在于调节学生智能、情感、意志等因素,使学生逐渐熟悉数学高考对学生的各项要求。此阶段学生应加强解题后反思,并舍得花一定的时间再次钻研考试大纲、考试说明及历届高考试题和各地的模拟试题,掌握高考信息、命题动向,提高正确率,练出速度,在练中升华到纯熟生巧的境界。在练习时要注意以下几点:解题要规范。俗话说,“不怕难题不得分,就怕每题都扣分”,所以务必将解题过程写得层次分明,结构完整。重要的是解题质量而非数量,要针对自己的问题有选择地精练。不满足于会做,更强调解题后的反思常悟,悟出解题策略、思想方法方面的精华,尤其是一些高考题、新题、难度稍大的题,这种反思更为重要,多思出悟性,常悟获精华。同学们应做到:
①解题时,会从多种方法中选择最省时、最省事的方法,力求多方位,多角度的思考问题,逐渐适应高考对“减缩思维”的要求。
②注意自己的解题速度,审题要慢,思维要全,下笔要准,答题要快。有时只是一个符号的误差,会让你体会到“失之毫厘,差之千里”的滋味,若在关键时候会让你抱憾终生。美国“哥伦比亚”号航天飞机返回地面时机毁人亡却源于一块绝缘瓦的故障。这些学习品质在以后工作中会让你受用终生。
③养成在解题过程中分析命题者的意图的习惯,思考命题者是怎样将考查的知识点有机的结合起来的,有那些思想方法被复合在其中,对命题者想要考我什么,我应该会什么,做到心知肚明。
四备考迎战阶段——心理调节,适应高考
最后,就是冲刺阶段,也称为“备考篇”。在这一阶段,老师会将复习的主动权交给你自己。以前学习的重点、难点、方法、思路都是以老师的意志为主线,但是,现在你要直接、主动的研读《考试说明》,研究近年来的高考试题,掌握高考信息、命题动向,并做到:
①检索自己的知识系统,紧抓薄弱点,并针对性地做专门的训练和突击措施(可请老师专门为你拎一拎);锁定重中之重,掌握最重要的知识到炉火纯青的地步。
②抓思维易错点,注重典型题型。
③浏览自己以前做过的习题、试卷,回忆自己学习相关知识的历程,做好“再”纠错工作。
④博览群书,博闻强记,使自己见多识广,注意那些背景新、方法新,知识具有代表性的问题。
⑤不做难题、偏题、怪题,保持情绪稳定,充满信心,准备应考。考前指导主要包括四个方面的内容:常考易错的基础知识;常用的解题方法;考试解题的技巧;考试心理的指导。
提高成绩的秘诀
从某种意义上讲,数学高考,考的是“难度”和“速度”,要取得好成绩,“正确率”和“速度”是保证。每个学生应根据自己实际水平与状况,系统地梳理知识,找出自己的弱项,挖掘根源。若是知识理解方面存在的问题,应该反复阅读教材、逐字理解概念前因后果,深入理解课本例题与习题的解题思路、解题方法、内涵与外延。若是本身学习态度、学习习惯方面存在的问题,那么应寻找那些干扰自己的非智力因素,找出主要矛盾与次要矛盾,一一排除。若是解题方法存在的问题,学生必须精做、精练,领悟解题途径与方法,才能起到举一反三的效果。一般说来,考试时首先要调整好心态,不能让试题的难度、份量、熟悉程度影响自己的情绪,力争让会做的题不扣分,不会做的题尽量得分。然后认真、仔细读题、审题,细心算题,规范答题。其次,应在规定的时间内完成,讲究快速、准确。平时做题应做到:想明白、说清楚、算准确,即注意思路的清晰性、思维的严密性、叙述的条理性、结果的准确性。当然应试的策略要因人而异,比如基础好的学生做填空、选择题可以控制在45分钟左右,基础较差的可能需要1小时甚至更多时间,主要是看怎样处理效果最好。每次考完后,学生自己都应认真总结,教师也要尽可能讲评到位。教师讲评最好能包括四个方面的内容:①本题考查了哪些知识点?②怎样审题?怎样打开解题思路?③本题主要运用了哪些方法和技巧?关键步骤在哪里?④学生答题中有哪些典型错误?哪些属于知识上、逻辑上、心理上还是策略上的原因?教师自己还要考虑一个问题,就是针对学生存在的问题如何调整复习策略,掌握应试技巧, 提高心理素质,使复习更有重点、有针对性。因此,从第一轮复习开始,就应当十分重视解题规范的养成以及运算能力的培养。复习备考还应注意培养自信心,保持平和心态,把握全局,从易到难,沉着应试,注意审题,计算细心,避免无谓差错,发挥应有的水平。
数学复习中的几个注意点
关注知识交叉点的训练。知识的交叉点,即知识之间纵向、横向的有机联系,既体现了数学高考的能力立意,又是高考命题的“热点”,而这恰恰是学生平时学习的“弱点”。
关注思维过程的培养。数学思维过程表现形式,是数学思想方法的集中体现,又是师生共同交流的纽带。在复习中教师要让学生人人参与讨论,相互进行交流,得以共同提高。
强化数学语言的互译。在高三复习中,教师应强化对学生数学语言互译的引导、训练,使学生理解题意、进行互译,从而正确解答问题。
强化应用问题考查。把现实生活、现代科技、社会热点问题作为背景的数学应用问题是高考热点之一,题目往往不是很难,关键是考查对题目信息的理解能力和数学化问题的解决能力。这是今后高考一定会坚持的大方向,但不会形成必考一个难题的“八股”模式,复习时不宜大量搜集大量应用难题,也不宜不加选择的进行专题训练,而应把力量放在对问题的语言形式与符号形式的互译能力的训练上,并且应把这种训练贯穿于复习的全过程。
瞄准好热点。中学教学内容与高等数学的结合部。例:复合函数的概念及其单调性,图象的平移,伸缩,对称变换,二次函数闭区间的最值;用二次函数研究方程的根的分布,数列的求和问题等等。这些都是以后进一步学习高等数学的基础。
抓住一个关键。书要学生去念,试要学生去考,谁也无法代替。因此能否把学生的内因调动起来,将直接影响复习效果,复习必须注意好以下几个问题:(1)培养学生的参与意识。(2)因材施教。①必须从学情出发。②调动学生积极性,做到让学生学有信心,学有兴趣。③控制差生面,抓基础训练,抓速度,抓准确,防止丢分。④控制难度。(3)充分暴露思维过程,不能以教师的思维代替学生的思维,要让学生在教师的引导下不断掌握数学的基本思想和方法。(4)提高效率,反馈要及时。
做题有几条原则:先易后难,先做简单题,再做复杂题,无须拘泥于题号次序。先熟后生,先做那些题型结构和内容比较熟悉的题,后做那些题型、内容甚至语言比较陌生的题。对于前者,不能因一时冲动匆忙对号入座而落入陷阱,碰到似曾相识的题目,更要注意彼此的区别;对于后者,切不可惊慌失措,万一有偏难题,要及时自我安慰,对别人可能会更难。第三是先高后低,难度大致相当时,先做分值高的题,后做分值低的题。不要专挑高分题做,以免造成“高不成低不就”的尴尬局面。坚持“先易后难\先熟后生\先同后异\先小后大\先点后面\先高后低”的基本原则.
保持最佳的复习心态。心态甚至比学习方法更重要。学习心态是学生学习时的心理状态,数学活动不仅是“数学认知活动”,而且也是在情感、心态参与下进行的传感活动,成功的数学活动往往是伴随着最佳心态产生的。那么怎样构成复习数学的最佳心态呢?我们必须在复习数学的过程中不断地给自己创造一种轻松感、愉悦感、严谨感和成功感。心理学研究表明,人在轻松的时候,大脑皮层的神经元才能形成兴奋中心,使神经细胞传递信息的通道畅通无阻,思维也就变得迅速敏捷。愉悦感是积极情感的心理表现,具有主动积极学习的倾向性,它是数学学习最佳心态的催化剂。学习中有了愉悦感,学习起来就会兴趣十足,积极主动,思维机制的运转就会加速。严谨感是指追求科学工作作风的情感,它能促使人们言必有据、一丝不苟。心理学告诉我们,严谨的作风会迁移到数学学习活动中去,而数学学习活动又能形成严谨的作风。因此解题过程中,必须思路清晰,因果分明,准确规范,不应有任何遗漏与含糊之处,即“会做的要得满分”。成功感是学习的“内动力”,是促使创造性思维引发的巨大精神力量,因此,要对自己的成绩有一种独特的成功快乐和自我欣赏与陶醉。这样才能保持积极的进取心态。所以,最佳学习心态主要由轻松感、愉悦感、严谨感和成功感构成,它们相互联系,相互促进。轻松是数学活动成功的发动机,愉悦是成功的催化剂,严谨则是成功的监控器,而成功既是关键又是最终的目的。
复习资料要精。复习资料不可超过两套,使用过程中,始终注重其系统性。千万不要贪多,资料多了,不但使自己身陷题海,不能自拔,而且会因为你的顾此失彼,而使知识体系得不到延续。
有的同学漠视自己作业和考试中出现的错误,将他们简单的归结为粗心大意。这是很严重的错误想法,我们的错误都有其必然性,一定要究根问底,找出真正的原因,及时改正,并记住这样的教训。
千万不要去钻难题、偏题、怪题。“高考以能力立意”,这里的能力是指:思维能力,对现实生活的观察分析力,创造性的想象能力,探究性实验动手能力,理解运用实际问题的能力,分析和解决问题的探究创新能力,处理、运用信息的能力,新材料、新情景、新问题应变理解能力,其重点是概念观点形成和规律的认识过程,它往往蕴藏在最简单、最基础的题目活事实之中。不是钻牛角尖能钻出来的能力。
不轻信猜题。合理看待来自老师和社会各界的猜题、压题信息,不可迷信。因为,他们也不是神,我们上了考场只能凭自己的实力,凭自己的智慧去打拼,所以,我们应该踏踏实实、认认真真做好复习应考工作
2007-4
㈥ 怎样学好高中数学三角函数
1、重视基础知识,构建完整体系
要想提高三角函数的学习效率,高中生需要重视基础知识的学习,以此来构建完整的三角函数知识体系,为日后的三角函数学习奠定稳固的基础。
首先,高中生需要注重概念的学习与理解,在初中阶段对于正弦与余弦有了一定的了解,那么在高中阶段接触三角函数知识就会比较容易,高中生不用花费很多的时间去理解三角函数概念,但是需要花更多的时间去理解三角函数的定理。
同时三角函数中的概念非常多,并且概念之间的差异性也比较大,但是仔细分析、观察,可以发现很多概念之间有着很大的联系,如正弦函数图象与余弦函数图象的周期都是2π,虽然图像是不一样的,但是周期却是一样的,高中生要善于探索三角函数概念、定理的记忆方法,以此来提高学习质量。
2、注重总结归纳,掌握学习方法
因为高中数学三角函数中涉及到的知识点比较多,这就需要高中生在学习过程中注重总结归纳,以此来掌握相应的学习方法。
三角函数中包含的公式非常多,也比较杂乱,很多高中生在学习过程中出现无从下手的情况,但是仔细分析这些三角函数能够发现,一些需要掌握的基本公式之间有着很大的联系,如任意角的转化,但是在充分理解了诱导公式之后,就可以把任意角中的计算转变成0°~90°间角的三角函数,由此可见,在学习过程中只有注重总结归纳,才能够摆脱复杂的学习状态,化复杂为简单、化抽象为直观,拥有一个清晰的解题思路。
除此之外,高中生还需要掌握一些学习方法,如在学习三角函数知识过程中,运用比较法开展学习,通过对函数的图象、周期性、奇偶性、值域、定义域的掌握与理解,能够掌握三角函数中的基本性质,并且可以和其它函数展开比较,以此来深化函数之间性质的不同点与相似点,加以理解与巩固,加深对三角函数知识的记忆[2]。高中生首先需要掌握三个基本三角函数中的图象,这样可以充分理解这些三角函数中的性质,同时还要明白y=sinx的图象与y=Asin(ωx+φ)的图象之间的关系,充分理解A、ω、φ中的含义,然后从三角函数性质中的定义作为出发点,推导出三角函数中的单调区间、最值、符号、定义域、值域、奇偶性、周期性等。
最后是三角函数式子之间的变换,因为三角函数式子比较多,很容易混淆这些式子,所以高中生需要明确每一个式子中的结构特征,紧抓公式之间的内在联系与变化规律。
3、掌握解题规律,提高解题效率
很多高中生都是通过死记硬背来记忆一些三角函数概念、公式等,在解题过程中也是“生搬硬套”,这样不仅无法提高解题效率,还会出现解题思维混乱的情况,不利于高中生取得理想的高考成绩,由此可见,高中生需要掌握解题规律,逐渐提升自我解题效率,在解题过程中摸索解题技巧与方法[3]。
高考中的三角函数考点比较固定,较为常见的三角函数解题方法有排除法、待定系数法、特殊值法、代入检验法、数形结合法等,高中生需要结合不同的题型来选择不同的解题方法。很多高中生在解题过程中经常会忽略一些限制条件,如对于“定义域”中的限制,这是比较容易被忽略的地方,但是也是影响整体解题质量的要点,在日常解题过程中需要着重注意。
同时,高中生在解答三角函数问题的时候,需要注重一题多解,如5cosx+12sinx=13,求tanx。这道三角函数可以用构造方程组法来解答问题,通过5cosx+12sinx=13以及sin2x+cos2x=1,消除其中的cosx,就可以求得tanx=;同时也可以利用代数换元法,让tanx=t,这样就能够更为直观得到答案;通过三角公式法也可以求得答案,但是解题过程较为繁琐。高中生需要掌握每一种解题方法,无形之中能够提升数学核心素养能力。
4、紧扣高考大纲,掌握复习技巧
人的记忆力是有限的,学过的知识点如果不加以巩固、复习就会忘记了,所以高中生需要重视高中数学三角函数的复习,在复习过程中要做到紧扣高考大纲,以此来掌握复习的技巧,提高复习效率。
在三角函数复习过程中,不要引入一些难度过高、技巧性较强、计算过繁的三角函数题目,而是要注重对于基础知识的复习,在充分掌握三角函数基础知识之后,再逐渐提升复习的难度。首先,高中生需要牢记一些在特殊角度中的三角函数值,如30、45、60等;其次,需要牢记一些三角函数基本公式,这些公式都是可以互相推导出来的,只有熟练掌握每一个三角函数的基本公式,才能够提高解题效率与正确率;
最后,高中生需要充分掌握三角函数的性质、图象、概念、基本变换等,在解题过程中运用验证法、数形结合法、换元法、参数方程法来解答问题,这样既能够巩固基础知识,同时也能够培养自身优秀的发散性思维能力与逻辑性思维能力。
总之,在高中三角函数学习过程中,高中生需要掌握相应的学习方法与解题技巧,在学到知识的同时提升数学思维能力,这样才能够提高学习质量。
㈦ 高中学习问题:学法讲座强调“构建知识体系很重要”。请问知识体系是什么概念又如何构建
以文科三科为例:
历史:分为两条线,即横向和纵向,时间和事件,世界史和中国史.按时间轴自己翻书整理一遍,然后再找老师核对.(一方面加强记忆,改正错误,另一方面也能让老师对你刮目相看,复习时会额外照顾你).
看书,历史又分为经济,政治,文化.将三者融合起来,再靠自己的理解加以记忆.考试时候主观题就不怕了.
政治:和历史一样,政治分为经济,政治,文化,哲学.但不同的是政治的知识网络是按单元来构建的.比如经济第一单元货币的基础(高考完忘的差不多了),要知道货币的概念,货币的几个功能手段等.
地理:也有两条线,一条线是高中必修教材,另外一条线就是地图(中国地图和世界地图)。高中教材可以用于构建知识网络,把教材相关的知识点背过并能记住他们在课本上的位置,地理需要补充的内容比较多,这些补充内容也要落实在教材的章节中。人文地理和少量的自然地理与地图也有关系,只要涉及到哪个地区的情况就需要落实在地图的位置,这样经过一个积累的过程后,每一个区域都有了相关的自然和人文地理概况,这样分析问题就有了依据。