A. 高中数学知识点整理
下面,我分章节讲一下数学的主干内容:那些虽然课本上没有,但是必须讲也必须学会的东西。
目录(未完待更新):
零,总论与试卷分析(就是上文内容)
一,函数
1.1 集合
1.2 函数的定义域
1.3 函数的值域
1.4 单调性
1.5 奇偶性,对称性,周期性
1.6 指数函数,对数函数
1.7 复合函数
1.8 含参函数
二,三角函数(仅函数部分,解三角形部分等讲完平面向量和平面几何再说)
2.1 正弦,余弦,正切
2.2 三角函数线
2.3 三角函数的基本形式与伸缩
2.4 三角变换公式和万能公式
2.5 三角函数最值问题
三,平面几何,平面向量,与直线与圆的方程
3.1 平行线和相交线
3.2 三角形
3.3 圆
3.4 基向量,正交基,和坐标系
3.5 平面向量与基本几何图形
3.6 向量运算律与推论
3.7 直线方程
3.8 圆的方程
3.9 用向量解决平面几何问题
四,解三角形
4.1 正弦定理
4.2 余弦定理
4.3 正弦定理和余弦定理的应用
4.4 解三角形中的多解问题
4.5 解三角形中的最值问题
五,立体几何
5.1 基本几何体:柱,锥,台,球
5.2 三视图与直观图
一,函数
1.1 集合。
集合的元素必须是确定的,并且是唯一的。比如,一个集合里不能有两个“1”。
1.2 函数的定义域。
除了最常见的几个:分母不为零,对数函数的真数大于零,偶数次方的被开方数不为负(注意我前面几个表述,其中暗含了区间的开闭),正切余切函数不能恰好取定义中分母为零的角度(正切余切都是用比值定义的) 还一定要注意一个容易被忽略的易错点: 无定义。
1.3 函数的值域
分离常数法 判别式法 换元法 基本不等式法 等等几种方法,看起来方法非常繁多,似乎挺难总结,但是,我们如果按题目的形式进行总结,每种只需要掌握一种,或者两种就可以了
B. 高中数学所有知识点归纳
高中数学基础知识梳理(数学小飞侠)
链接:
若资源有问题,欢迎追问~
C. 高中向量知识梳理
一、平面向量 定义:既有大小又有方向的量叫向量。例:力、速度、加速度、冲量等 注意:1(数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。 2(从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。向量的定义以及有关概念 3(向量是既有大小又有方向的量。长度相等、方向相同的向量相等。 4(正因为如此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置。 向量的表示方法: 1(几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫点) 2(字母表示法:可表示为(印刷时用黑体字) 模的概念:向量的大小——长度称为向量的模。 记作:|| 模是可以比较大小的 两个特殊的向量: 1(零向量——长度(模)为0的向量,记作。的方向是任意的。 注意与0的区别 2(单位向量——长度(模)为1个单位长度的向量叫做单位向量。 向量间的关系: 平行向量:方向相同或相反的非零向量叫做平行向量。 记作:∥∥;规定:与任一向量平行 相等向量:长度相等且方向相同的向量叫做相等向量。 记作:=;规定:= 任两相等的非零向量都可用一有向线段表示,与起点无关。 共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。 三、向量的加法 1.定义:求两个向量的和的运算,叫做向量的加法。 注意:两个向量的和仍旧是向量(简称和向量) 2.三角形法则:(口诀)“首尾相接” 注意: 1(“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点 2(可以推广到n个向量连加 3( 4(不共线向量都可以采用这种法则——三角形法则 3.加法的交换律和平行四边形法则 1(向量加法的平行四边形法则。2(向量加法的交换律:+=+ 3(向量加法的结合律:(+) +=+ (+) 向量的减法 用“相反向量”定义向量的减法 1(“相反向量”的定义:与a长度相同、方向相反的向量。记作 (a 2(规定:零向量的相反向量仍是零向量。(((a) = a,任一向量与它的相反向量的和是零向量。a + ((a) = 0,如果a、b互为相反向量,则a = (b, b = (a, a + b = 0 3(向量减法的定义:向量a加上的b相反向量,叫做a与b的差。 即:a ( b = a + ((b) 求两个向量差的运算叫做向量的减法。 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a,则x叫做a与b的差,记作a ( b 求作差向量:已知向量a、b,求作向量 作法:在平面内取一点O, 作= a, = b 则= a ( b 即a ( b可以表示为从向量b的终点指向向量a的终点的向量。 注意:1(表示a ( b。强调:差向量“箭头”指向被减数 2(用“相反向量”定义法作差向量,a ( b = a + ((b) 显然,此法作图较繁,但最后作图可统一。 五、实数与向量的积 实数λ与向量的积,记作:λ 定义:实数λ与向量的积是一个向量,记作:λ 1(|λ|=|λ||| 2(λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ= 运算定律:结合律:λ(μ)=(λμ) ① 第一分配律:(λ+μ)=λ+μ ② 第二分配律:λ(+)=λ+λ ③ 六、向量共线的充要条件(向量共线定理) 若有向量(()、,实数λ,使=λ则由实数与向量积的定义知:与为共线向量 若与共线(()且||:||=μ,则当与同向时=μ 当与反向时=(μ 从而得:向量与非零向量共线的充要条件是:有且只有一个非零实数λ 使=λ 七、平面向量基本定理: 如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2 注意几个问题: 1( 、必须不共线,且它是这一平面内所有向量的一组基底 2( 这个定理也叫共面向量定理 3(λ1,λ2是被,,唯一确定的数量 八、平面向量数量积(内积)的定义,a(b = |a||b|cos(, 并规定0与任何向量的数量积为0。( 注意的几个问题;——两个向量的数量积与向量同实数积有很大区别 1(两个向量的数量积是一个实数,不是向量,符号由cos(的符号所决定。 2(两个向量的数量积称为内积,写成a(b;今后要学到两个向量的外积a×b,而ab是两个数量的积,书写时要严格区分。 3(在实数中,若a(0,且a(b=0,则b=0;但是在数量积中,若a(0,且a(b=0,不能推出b=0。因为其中cos(有可能为0。这就得性质2。 4(已知实数a、b、c(b(0),则ab=bc ( a=c。但是a(b = b(c ( a = c 如右图:a(b = |a||b|cos( = |b||OA| b(c = |b||c|cos( = |b||OA| (ab=bc 但a ( c 5(在实数中,有(a(b)c = a(b(c),但是(a(b)c ( a(b(c) 显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线。 向量的数量积的几何意义: 数量积a(b等于a的长度与b在a方向上投影|b|cos(的乘积。 两个向量的数量积的性质: 设a、b为两个非零向量,e是与b同向的单位向量。 1(e(a = a(e =|a|cos( 2(a(b ( a(b = 0 3(当a与b同向时,a(b = |a||b|;当a与b反向时,a(b = (|a||b|。 特别的a(a = |a|2或 4(cos( = 5(|a(b| ≤ |a||b| 平面向量的运算律 1、交换律:a ( b = b ( a 2、(a)(b =(a(b) = a((b) a + b)(c = a(c + b(c
D. 求高中数学基础知识提纲
希望能帮到你、、、、、、、、、、、、
高中数学知识点总结
高中数学立体几何初步知识点总结:
立体几何初步:①柱、锥、台、球及其简单组合体等内容是立体几何的基础,也是研究空间问题的基本载体,是高考考查的重要方面,在学习中应注意这些几何体的概念、性质以及对面积、体积公式的理解和运用。②三视图和直观图是认知几何体的基本内容,在高考中,对这两个知识点的考查集中在两个方面,一是考查三视图与直观图的基本知识和基本的视图能力,二是根据三视图与直观图进行简单的计算,常以选择题、填空题的形式出现。③几何体的表面积和体积,在高考中有所加强,一般以选择题、填空、简答等形式出现,难度不大,但是常与其他问题一起考查④平面的基本性质与推理主要包括平面的有关概念,四个公理,等角定理以及异面直线的有关知识,是整个立体几何的基础,学习时应加强对有关概念、定理的理解。⑤平行关系和垂直关系是立体几何中的两种重要关系,也是解决立体几何的重要关系,要重点掌握。
高中数学平面解析几何初步知识点总结:
平面解析几何初步:①直线与方程是解析几何的基础,是高考重点考查的内容,单独考查多以选择题、填空题出现;间接考查则以直线与圆、椭圆、双曲线、抛物线等知识综合为主,多为中、高难度试题,往往作为把关题出现在高考题目中。直接考查主要考查直线的倾斜角、直线方程,两直
高中数学集合知识点总结:
作为高中数学的一种基本语言及工具,几乎为每年高考的必考内容,多以选择题出现,分值约占总分的3%-5%,多与函数、不等式、数列等知识联系而命制小型综合题,根据新课标考试大纲的要求,集合关系与集合运算为考试重点,因此既要牢固掌握集合基本概念与运算,又要加强集合与其他数学知识的联系,突出集合的工具性,尤其是熟练进行集合的自然语言、图形语言、符号语言的相互转化。
线的位置关系,点到直线的距离,对称问题等,间接考查一定会出现在高考试卷中,主要考查直线与圆锥曲线的综合问题。②圆的问题主要涉及圆的方程、直线与圆的位置关系、圆与圆的位置关系以及圆的集合性质的讨论,难度中等或偏易,多以选择题、填空题的形式出现,其中热点为圆的切线问题。③空间直角坐标系是平面直角坐标系在空间的推广,在解决空间问题中具有重要的作业,空间向量的坐标运算就是在空间直角坐标系下实现的。空间直角坐标系也是解答立体几何问题的重要工具,一般是与空间向量在坐标运算结合起来运用,也不排除出现考查基础知识的选择题和填空题。
高中数学函数概念与基本初等函数ⅰ知识点总结:
函数概念与基本初等函数ⅰ:①函数是高中数学最重要、最基础的内容,函数的思想方法贯穿于各章的知识中,函数问题在每年的高考中,不但以
高中数学算法初步知识点总结:
算法初步:①算法是新课标增加的内容,以选择题或填空题的形式考查,应该注意理解算法的基本概念与特征,注意算法的本质是解决问题的一种程序性方法,学会算法的自然语言。框图程序设计语言等的相互转化。②基本算法语句也是新课标增加的内容,是数学及其应用的重要组成部分,预计高考对本部分的考查可能与代数、几何中的有关知识结合,以选择题、填空题的形式考查对几种基本算法语句的理解和应用。
选择题、填空题的形式出现,而且几乎每年都有一道解答题,考查内容重点涉及函数的概念、图像、性质等各个方面,难度在低、中、高档方面均有体现。②函数和方程为新课标新增添内容,要求结合二次函数的图像,了解函数的零点与方程根的联系,能判断一元二次方程的根的存在性及根的个数;根据具体函数的图像,能够用二分法求相应方程的近似解,本部分知识蕴含着数形结合的思想、函数与方程的思想,在学习时注意体会。③学习数学是为了应用数学,指数函数、对数函数以及幂函数等都是重要的基本初等函数,是函数概念的具体体现于综合应用,和其他函数一样,对于它们的定义、图像以及性质等是高考考查的重点,与其他函数、方程、不等式以及数列相融合的知识也是考查的热点。
高中数学统计知识点总结:
统计:①随机抽样在高考中主要是选择题或填空题,考查学生对各种抽样方法的理解,一次学习时应加强对这三种抽样飞的理解,搞清三种抽样法的区别和联系。②样本估计法也是以小题为主,考查排列分布直方图、平均数、标准差等的概念的理解和应用,学习时应结合实例理解样本估计总体的思想,加深对;频率分布直方图的理解与应用,能从数据中抽取基本的数字特征,并记准相应的公式。③变量的相关性的重点是变量间的线性相关及两个变量的线性相关、最小二法思想、回归方程的建立以及对回归直线与观测数据的理解。
高中数学概率知识点总结:
概率:①随机事件的概率为近几年新增添的内容,高考中主要以选择题、填空题的形式出现,与其他知识综合考查其应用,学习时,应通过基础知识的学习理解其基本概念、基本原理,然后在此基础上解决生活中的有关问题,还要理解随机事件发生的不确定性和频率的稳定性等知识。②古典概型是概率中最基本的一个概率模型,高考中,主要是利用古典概型的概率公式解决一些古典概型的应用题,考查形式可以是选择题、填空题、解答题。③几何概型是新增添内容,高考可能会有所侧重,主要以选择题、填空题出现,应注意基本概念的理解。
高中数学基本初等函数ⅱ(三角函数)知识点总结:
基
高中数学平面向量 知识点总结:
平面向量:在近几年的高考中,平面向量每年都考,而且有加强的趋势,在学习中应抓住两个方面:一是向量的概念、性质、运算;二是应用向量解决距离、夹角、垂直、模的问题。学会运用向量处理三角函数、解析几何、平面几何、实际应用等综合问题,以发展运算求解能力和解析、解决
高中数学三角恒等变形知识点总结:
三角恒等变形:①两角和与差的三角函数公式是历年高考的重要内容,而且有进一步加强的趋势。因此公式应用讲究一个活字,深刻理解各个公式之间的联系,掌握公式应用的通性通法是学习的关键。②三角恒等变形中的三角函数求值、化简及恒等证明是高考是热点,需要掌握的公式有两角和差、倍角的三角函数公式。学习的重点是掌握变换的基本思想方法,不是盲目地训练繁难 偏题、怪题,应注重通性、通法的运用。
实际问题的能力。
本初等函数ⅱ(三角函数):①三角函数是中学中重要的初等函数之一,它的定义和性质有十分明显的特征和规律性,它和代数、几何有着密切的联系,是研究其他部分知识的重要工具,在实际问题中也有重要的应用,是高考对基础知识和基本技能考查的重要内容之一。②在高考中主要有四类问题:一是与三角函数单调性有关的问题,二是与三角函数图像有关的问题,三是应用同角变换和诱导公式,求三角函数及化简和等式证明的问题,四是与周期和奇偶性有关的问题。③高考中多以选择题、填空题形式出现,但也不排除在解答题中单独出现,其难度为中、低档。
高中数学解三角形知识点总结:
解三角形:在高考试题中,有关解三角形的问题主要考查正弦定理、余弦定理及利用三角公式进行恒等变形的能力,以化简、求值或判断三角形的形状为主,也与其他知识结合,考查解决综合问题的能力。有关解三角形的题型主要是选择题、填空题、解答题等,一般为简单题或中档题。
高中数学数列知识点总结:
数列:数列是高中数学的重要内容,是中学数学联系实际的主要渠道之一,数列与数、式、函数、方程、不等式、三角函数、解析几何的关系十分密切。数列中的递推思想、函数思想、分类讨论思想以及数列求和、求通向公式的各种方法和技巧在中学数学中有着十分重要的地位,因此数列知识可以命综合性强的试题。每年高考中与数列有关的试题约占全卷的10%-15%,基因数列内容的客观题,也有数列与相关内容结合的综合题与实际应用题。
高中数学不等式知识点总结:
不等式:①不等关系是客观世界中量与量之间的一种主要关系,而不等式则是反映这种关系的基本形式,一直是高考考查的重点内容,尤其以实际问题、函数为背景的综合题较多。不等式的定义域性质是不等式的基础,许多不等式的定理、公式都是在此基础上推理、拓展而成的,因此学校时要抓住基本概念和性质,熟练掌握性质的变形及其应用,不断提升思维的深度和广度,才能在解决与不等式有关的综合题上有备无患、得心应手。②一元二次不等式是历年考查的重点,因为其与一元二次函数、一元二次方程等联系密切,内容交融,经常考查含参数的不等式的求解、恒成立问题、一元二次不等式的实际应用、综合推理题等。因此学习时应该通过图像了解一元二次不等式与相应的二次函数、二次方程的联系。③线性规划问题是众多知识的交汇点,在实际生活、实际生产中的应用十分广泛,而且在线性规划问题的解决中,需要用到多种数学思想方法。所以线性规划也是高考命题的热点内容。高考中主要考查平面区域的表示。线性目标函数的最值等问题,主要以选择题、填空题的形式出现,有时也以解答题的形式出现。
E. 高中数学知识点总结。。。网址
高中数学知识点总结 http://..com/search?lm=0&rn=10&pn=0&fr=search&ie=gbk&word=%B8%DF%D6%D0%CA%FD%D1%A7%D6%AA%CA%B6%B5%E3%D7%DC%BD%E1%CD%F8%D6%B7 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
中元素各表示什么?
注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3. 注意下列性质:
(3)德摩根定律:
4. 你会用补集思想解决问题吗?(排除法、间接法)
的取值范围。
6. 命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。)
8. 函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
9. 求函数的定义域有哪些常见类型?
10. 如何求复合函数的定义域?
义域是_____________。
11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?
12. 反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)
13. 反函数的性质有哪些?
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;
14. 如何用定义证明函数的单调性?
(取值、作差、判正负)
如何判断复合函数的单调性?
∴……)
15. 如何利用导数判断函数的单调性?
值是( )
A. 0 B. 1 C. 2 D. 3
∴a的最大值为3)
16. 函数f(x)具有奇偶性的必要(非充分)条件是什么?
(f(x)定义域关于原点对称)
注意如下结论:
(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
17. 你熟悉周期函数的定义吗?
函数,T是一个周期。)
如:
18. 你掌握常用的图象变换了吗?
注意如下“翻折”变换:
19. 你熟练掌握常用函数的图象和性质了吗?
的双曲线。
应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程
②求闭区间[m,n]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。
由图象记性质! (注意底数的限定!)
利用它的单调性求最值与利用均值不等式求最值的区别是什么?
20. 你在基本运算上常出现错误吗?
21. 如何解抽象函数问题?
(赋值法、结构变换法)
22. 掌握求函数值域的常用方法了吗?
(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)
如求下列函数的最值:
23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?
24. 熟记三角函数的定义,单位圆中三角函数线的定义
25. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?
(x,y)作图象。
27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。
28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?
29. 熟练掌握三角函数图象变换了吗?
(平移变换、伸缩变换)
平移公式:
图象?
30. 熟练掌握同角三角函数关系和诱导公式了吗?
“奇”、“偶”指k取奇、偶数。
A. 正值或负值 B. 负值 C. 非负值 D. 正值
31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?
理解公式之间的联系:
应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)
具体方法:
(2)名的变换:化弦或化切
(3)次数的变换:升、降幂公式
(4)形的变换:统一函数形式,注意运用代数运算。
32. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?
(应用:已知两边一夹角求第三边;已知三边求角。)
33. 用反三角函数表示角时要注意角的范围。
34. 不等式的性质有哪些?
答案:C
35. 利用均值不等式:
值?(一正、二定、三相等)
注意如下结论:
36. 不等式证明的基本方法都掌握了吗?
(比较法、分析法、综合法、数学归纳法等)
并注意简单放缩法的应用。
(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)
38. 用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始
39. 解含有参数的不等式要注意对字母参数的讨论
40. 对含有两个绝对值的不等式如何去解?
(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)
证明:
(按不等号方向放缩)
42. 不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)
43. 等差数列的定义与性质
0的二次函数)
项,即:
44. 等比数列的定义与性质
46. 你熟悉求数列通项公式的常用方法吗?
例如:(1)求差(商)法
解:
[练习]
(2)叠乘法
解:
(3)等差型递推公式
[练习]
(4)等比型递推公式
[练习]
(5)倒数法
47. 你熟悉求数列前n项和的常用方法吗?
例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
解:
[练习]
(2)错位相减法:
(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。
[练习]
48. 你知道储蓄、贷款问题吗?
△零存整取储蓄(单利)本利和计算模型:
若每期存入本金p元,每期利率为r,n期后,本利和为:
△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)
若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足
p——贷款数,r——利率,n——还款期数
49. 解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。
(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一
(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不
50. 解排列与组合问题的规律是:
相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。
如:学号为1,2,3,4的四名学生的考试成绩
则这四位同学考试成绩的所有可能情况是( )
A. 24 B. 15 C. 12 D. 10
解析:可分成两类:
(2)中间两个分数相等
相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。
∴共有5+10=15(种)情况
51. 二项式定理
性质:
(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第
表示)
52. 你对随机事件之间的关系熟悉吗?
的和(并)。
(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。
(6)对立事件(互逆事件):
(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。
53. 对某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即
(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生
如:设10件产品中有4件次品,6件正品,求下列事件的概率。
(1)从中任取2件都是次品;
(2)从中任取5件恰有2件次品;
(3)从中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品为“恰有2次品”和“三件都是次品”
(4)从中依次取5件恰有2件次品。
解析:∵一件一件抽取(有顺序)
分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。
54. 抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
55. 对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
要熟悉样本频率直方图的作法:
(2)决定组距和组数;
(3)决定分点;
(4)列频率分布表;
(5)画频率直方图。
如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。
56. 你对向量的有关概念清楚吗?
(1)向量——既有大小又有方向的量。
在此规定下向量可以在平面(或空间)平行移动而不改变。
(6)并线向量(平行向量)——方向相同或相反的向量。
规定零向量与任意向量平行。
(7)向量的加、减法如图:
(8)平面向量基本定理(向量的分解定理)
的一组基底。
(9)向量的坐标表示
表示。
57. 平面向量的数量积
数量积的几何意义:
(2)数量积的运算法则
[练习]
答案:
答案:2
答案:
58. 线段的定比分点
※. 你能分清三角形的重心、垂心、外心、内心及其性质吗?
59. 立体几何中平行、垂直关系证明的思路清楚吗?
平行垂直的证明主要利用线面关系的转化:
线面平行的判定:
线面平行的性质:
三垂线定理(及逆定理):
线面垂直:
面面垂直:
60. 三类角的定义及求法
(1)异面直线所成的角θ,0°<θ≤90°
(2)直线与平面所成的角θ,0°≤θ≤90°
(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)
三类角的求法:
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
[练习]
(1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。
(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。
①求BD1和底面ABCD所成的角;
②求异面直线BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。
(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。
(∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……)
61. 空间有几种距离?如何求距离?
点与点,点与线,点与面,线与线,线与面,面与面间距离。
将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。
如:正方形ABCD—A1B1C1D1中,棱长为a,则:
(1)点C到面AB1C1的距离为___________;
(2)点B到面ACB1的距离为____________;
(3)直线A1D1到面AB1C1的距离为____________;
(4)面AB1C与面A1DC1的距离为____________;
(5)点B到直线A1C1的距离为_____________。
62. 你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?
正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:
它们各包含哪些元素?
63. 球有哪些性质?
(2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!
(3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。
(5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。
积为( )
答案:A
64. 熟记下列公式了吗?
(2)直线方程:
65. 如何判断两直线平行、垂直?
66. 怎样判断直线l与圆C的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
67. 怎样判断直线与圆锥曲线的位置?
68. 分清圆锥曲线的定义
70. 在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)
71. 会用定义求圆锥曲线的焦半径吗?
如:
通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。
72. 有关中点弦问题可考虑用“代点法”。
答案:
73. 如何求解“对称”问题?
(1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。
75. 求轨迹方程的常用方法有哪些?注意讨论范围。
(直接法、定义法、转移法、参数法)
76. 对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
F. 高中数学知识点总结
《高中数学基础知识梳理(数学小飞侠)》网络网盘免费下载
链接:
资源目录
01.集合例题讲解.mp4
01.集合进阶.mp4
02函数的值域.mp4
03函数的定义域与解析式.mp4
04函数的单调性.mp4
04函数的奇偶性.mp4
05指数运算与指数函数.mp4
07对数运算与对数函数.mp4
08幂函数突破.mp4
09函数零点专题.mp4
10含参二次函数与不等式专题.mp4
11二次函数根的分布专题.mp4
12空间几何体.mp4
13点线面位置关系进阶.mp4
14平行关系突破.mp4
15垂直关系突破.mp4
16空间几何关系综合.mp4
17直线方程突破.mp4
18圆的方程突破.mp4
19算法初步.mp4
20算法语句与算法案例.mp4
21数据的收集与频率分布.mp4
22常用统计量与相关关系.mp4
23古典概型概率.mp4
24几何概型概率.mp4
25任意角重难点.mp4
26三角函数定义与诱导公式.mp4
27三角函数图像及性质.mp4
28平面向量几何运算.mp4
29平面向量代数运算.mp4
30.三角恒等变换.mp4
31.三角函数计算专题.mp4
32.正弦定理与余弦定理.mp4
33.等差数列突破.mp4
34.等比数列突破.mp4
35.数列通项公式专题 .mp4
36.数列求和公式专题 .mp4
37.二次不等式与分式不等式.mp4
38.线性规划问题.mp4
39.基本不等式突破.mp4
40.逻辑用语专题.mp4
41.椭圆方程及其几何性质.mp4
42.双曲线方程及其性质.mp4
43.抛物线方程及其性质.mp4
44.直线与圆锥曲线综合.mp4
45.空间向量突破.mp4
46.导数的计算专题.mp4
47.导数的应用.mp4
48.导数的应用(二).mp4
49.定积分与微积分.mp4
50.复数专题.mp4
51.排列组合.mp4
52.二项式定理.mp4
53.随机变量及其变量.mp4
54回归分析与独立性检验.mp4
资源目录
01.集合例题讲解.mp4
01.集合进阶.mp4
02函数的值域.mp4
03函数的定义域与解析式.mp4
04函数的单调性.mp4
04函数的奇偶性.mp4
05指数运算与指数函数.mp4
07对数运算与对数函数.mp4
08幂函数突破.mp4
09函数零点专题.mp4
10含参二次函数与不等式专题.mp4
11二次函数根的分布专题.mp4
12空间几何体.mp4
13点线面位置关系进阶.mp4
14平行关系突破.mp4
15垂直关系突破.mp4
16空间几何关系综合.mp4
17直线方程突破.mp4
18圆的方程突破.mp4
19算法初步.mp4
20算法语句与算法案例.mp4
21数据的收集与频率分布.mp4
22常用统计量与相关关系.mp4
23古典概型概率.mp4
24几何概型概率.mp4
25任意角重难点.mp4
26三角函数定义与诱导公式.mp4
27三角函数图像及性质.mp4
28平面向量几何运算.mp4
29平面向量代数运算.mp4
30.三角恒等变换.mp4
31.三角函数计算专题.mp4
32.正弦定理与余弦定理.mp4
33.等差数列突破.mp4
34.等比数列突破.mp4
35.数列通项公式专题 .mp4
36.数列求和公式专题 .mp4
37.二次不等式与分式不等式.mp4
38.线性规划问题.mp4
39.基本不等式突破.mp4
40.逻辑用语专题.mp4
41.椭圆方程及其几何性质.mp4
42.双曲线方程及其性质.mp4
43.抛物线方程及其性质.mp4
44.直线与圆锥曲线综合.mp4
45.空间向量突破.mp4
46.导数的计算专题.mp4
47.导数的应用.mp4
48.导数的应用(二).mp4
49.定积分与微积分.mp4
50.复数专题.mp4
51.排列组合.mp4
52.二项式定理.mp4
53.随机变量及其变量.mp4
54回归分析与独立性检验.mp4
G. 高中数学 平面向量 公式大全
一、平面向量公式:设a=(x,y),b=(x',y')。
1、向量的加法
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0。0的反向量为0
AB-AC=CB。即“共同起点,指向被减”
a=(x,y)b=(x',y')则a-b=(x-x',y-y')
二、平面向量,垂直,平行平移等的关系:
三点共线定理
若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA+GB+GC=O,则G为△ABC的重心
向量共线的重要条件
若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。
a//b的重要条件是xy'-x'y=0。
零向量0平行于任何向量。
向量垂直的充要条件
a⊥b的充要条件是a•b=0。
a⊥b的充要条件是xx'+yy'=0。
零向量0垂直于任何向量。
比较:
共线向量与平行向量关系
由于任何一组平行向量都可移到同一直线上,故平行向量也叫做共线向量。
平行向量与相等向量的关系
相等的向量一定平行,但是平行的向量并不一定相等。两个向量相等并不一定这两个向量一定要重合。只用这两个向量长度相等且方向相同即可。其中“方向相同”就包含着向量平行的含义。
H. 总结高中数学知识点(人教版)
.集合、简易逻辑
理解集合、子集、补集、交集、并集的概念;
了解空集和全集的意义;
了解属于、包含、相等关系的意义;
掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
理解逻辑联结词"或"、"且"、"非"的含义;
理解四种命题及其相互关系;掌握充要条件的意义。
2.函数
了解映射的概念,在此基础上加深对函数概念的理解。
了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法。
了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数。
理解分数指数的概念,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质。
理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图象和性质。
能够运用函数的性质、指数函数、对数函数的性质解决某些简单的实际问题。
3.不等式
理解不等式的性质及其证明。
掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
掌握分析法、综合法、比较法证明简单的不等式。
掌握二次不等式,简单的绝对值不等式和简单的分式不等式的解法。
理解不等式:|a|-|b|≤|a+b|≤|a|+|b|。
4.三角函数(46课时)
理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。
掌握任意角的正弦、余弦、正切的定义,
并会利用单位圆中的三角函数线表示正弦、余弦和正切。
了解任意角的余切、正割、余割的定义;
掌握同角三角函数的基本关系式:
掌握正弦、余弦的诱导公式。
掌握两角和与两角差的正弦、余弦、正切公式;
掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力。
能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆)。
了解周期函数与最小正周期的意义;
了解奇偶函数的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质;以及简化这些函数图象的绘制过程;
会用"五点法"画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。
会由已知三角函数值求角,并会用符号 arcsin x、arccos x、arctan x表示。
掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。
5.平面向量
理解向量的概念,掌握向量的几何表示,
了解共线向量的概念。
掌握向量的加法与减法。
掌握实数与向量的积,理解两个向量共线的充要条件。
了解平面向量的基本定理,
理解平面向量的坐标的概念,
掌握平面向量的坐标运算。
掌握平面向量的数量积及其几何意义,
了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
掌握平面两点间的距离公式,
掌握线段的定比分点和中点坐标公式,并且能熟练运用;
掌握平移公式。
6.数列
理解数列的概念,
了解数列通项公式的意义;
了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
理解等差数列的概念,
掌握等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题。
理解等比数列的概念
掌握等比数列的通项公式与前 n 项和公式,并能解决简单的实际问题。
7.直线和圆的方程
理解直线的倾斜角和斜率的概念,
掌握过两点的直线的斜率公式,
掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。
掌握两条直线平行与垂直的条件,
掌握两条直线所成的角和点到直线的距离公式;
能够根据直线的方程判断两条直线的位置关系。
会用二元一次不等式表示平面区域。
了解简单的线性规划问题,了解线性规划的意义,并会简单应用。
掌握圆的标准方程和一般方程,
了解参数方程的概念,理解圆的参数方程。
8.圆锥曲线方程
掌握椭圆的定义、标准方程和椭圆的简单几何性质;
理解椭圆的参数方程。
掌握双曲线的定义、标准方程和双曲线的简单几何性质。
掌握抛物线的定义、标准方程和抛物线的简单几何性质。
9.直线、平面、简单几何体
掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;
能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
掌握两条直线平行与垂直的判定定理和性质定理;
掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会利用给出的公垂线计算距离)。
掌握直线和平面平行的判定定理和性质定理;
掌握直线和平面垂直的判定定理和性质定理;
掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念;
了解三垂线定理及其逆定理。
掌握两个平面平行的判定定理和性质定理;
掌握二面角、二面角的平面角、两个平行平面间的距离的概念;
掌握两个平面垂直的判定定理和性质定理。
进一步熟悉反证法,会用反证法证明简单的问题。
了解多面体的概念,了解凸多面体的概念。
了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。
了解正多面体的概念,了解多面体的欧拉公式。
了解球的概念,掌握球的性质,掌握球的表面积和体积公式。
10.排列、组合、二项式定理
掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
11.概率
了解随机事件的统计规律性和随机事件概率的意义。
了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率。
了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率。
会计算事件在 n 次独立重复试验中恰好发生 k 次的概率。
选修Ⅰ
1.统计
了解随机抽样、分层抽样的意义,会用它们对简单实际问题进行抽样;
会用样本频率分布估计总体分布,
会利用样本估计总体期望值和方差,体会如何从数据中提取信息并作出统计推断。
2.导数
理解导数是平均变化率的极限;理解导数的几何意义。
掌握函数 的导数公式,会求多项式函数的导数。
理解极大值、极小值、最大值、最小值的概念,
会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。
选修Ⅱ
1.概率与统计
了解离散型随机变量的意义,
会求出某些简单的离散型随机变量的分布列。
了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。
会用样本频率分布估计总体分布。
了解正态分布的意义及主要性质。
了解线性回归的方法和简单应用。
2. 极限
理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
从数列和函数的变化趋势了解数列极限和函数极限的概念。
掌握极限的四则运算法则;会求某些数列与函数的极限。
了解连续的意义,借助几何直观理解闭区间上连续函数有最大值和最小值的性质。
3.导数
了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);
掌握函数在一点处的导数的定义和导数的几何意义;
理解导函数的概念。
熟记基本导数公式(c,xm(m为有理数), sin x, cos x, ex, ax, ln x,logax的导数);
掌握两个函数和、差、积、商的求导法则;
了解复合函数的求导法则,会求某些简单函数的导数。
会从几何直观了解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
4.数系的扩充--复数
理解复数的有关概念;
掌握复数的代数表示与几何意义。
掌握复数代数形式的运算法则,能进行复数代数形式的加、减、乘、除运算。
I. 谁能帮我总结高中数学会考知识点
2009年高中数学会考复习必背知识点
第一章 集合与简易逻辑 1、含n个元素的集合的所有子集有 个
第二章 函数 1、求 的反函数:解出 , 互换,写出 的定义域;
2、对数:①:负数和零没有对数,②、1的对数等于0: ,③、底的对数等于1: ,
④、积的对数: , 商的对数: ,
幂的对数: ; ,
第三章 数列
1、数列的前n项和: ; 数列前n项和与通项的关系:
2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数;
(2)、通项公式: (其中首项是 ,公差是 ;)
(3)、前n项和:1. (整理后是关于n的没有常数项的二次函数)
(4)、等差中项: 是 与 的等差中项: 或 ,三个数成等差常设:a-d,a,a+d
3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,( )。
(2)、通项公式: (其中:首项是 ,公比是 )
(3)、前n项和:
(4)、等比中项: 是 与 的等比中项: ,即 (或 ,等比中项有两个)
第四章 三角函数
1、弧度制:(1)、 弧度,1弧度 ;弧长公式: ( 是角的弧度数)
2、三角函数 (1)、定义:
3、特殊角的三角函数值
的角度
的弧度
—
—
4、同角三角函数基本关系式:
5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正
公式二: 公式三: 公式四: 公式五:
6、两角和与差的正弦、余弦、正切
: :
: :
: :
7、辅助角公式:
8、二倍角公式:(1)、 : )
:
:
(2)、降次公式:(多用于研究性质)
9、三角函数:
函数 定义域 值域 周期性 奇偶性 递增区间 递减区间
[-1,1]
奇函数
[-1,1]
偶函数
函数 定义域 值域 振幅 周期 频率 相位 初相 图象
[-A,A] A
五点法
10、解三角形:(1)、三角形的面积公式:
(2)正弦定理:
(3)、余弦定理:
求角:
第五章、平面向量 1、坐标运算:设 ,则
数与向量的积:λ ,数量积:
(2)、设A、B两点的坐标分别为(x1,y1),(x2,y2),则 .(终点减起点)
;向量 的模| |: ;
(3)、平面向量的数量积: , 注意: , ,
(4)、向量 的夹角 ,则 ,
2、重要结论:(1)、两个向量平行: ,
(2)、两个非零向量垂直 ,
(3)、P分有向线段 的:设P(x,y) ,P1(x1,y1) ,P2(x2,y2) ,且 ,
则定比分点坐标公式 , 中点坐标公式
第六章:不等式
1、 均值不等式:(1)、 ( )
(2)、a>0,b>0; 或 一正、二定、三相等
2、解指数、对数不等式的方法:同底法,同时对数的真数大于0;
第七章:直线和圆的方程
1、斜 率: , ;直线上两点 ,则斜率为
2、直线方程:(1)、点斜式: ;(2)、斜截式: ;
(3)、一般式: (A、B不同时为0) 斜率 , 轴截距为
3、两直线的位置关系(1)、平行: 时 , ;
垂直: ;
(2)、到角范围: 到角公式 : 都存在,
夹角范围: 夹角公式: 都存在,
(3)、点到直线的距离公式 (直线方程必须化为一般式)
6、圆的方程:(1)、圆的标准方程 ,圆心为 ,半径为
(2)圆的一般方程 (配方: )
时,表示一个以 为圆心,半径为 的圆;
第八章:圆锥曲线 1、椭圆标准方程: ,
半焦距: , 离心率的范围: ,准线方程: ,参数方程:
2、双曲线标准方程: ,半焦距: ,离心率的范围:
准线方程: ,渐近线方程用 求得: ,等轴双曲线离心率
3、抛物线: 是焦点到准线的距离 ,离心率:
:准线方程 焦点坐标 ; :准线方程 焦点坐标
:准线方程 焦点坐标 ; :准线方程 焦点坐标
第九章 直线 平面 简单的几何体
1、长方体的对角线长 ;正方体的对角线长
2、两点的球面距离求法:球心角的弧度数乘以球半径,即 ;
3、球的体积公式: ,球的表面积公式:
4、柱体 ,锥体 ,锥体截面积比:
第十章 排列 组合 二项式定理
1、排列:(1)、排列数公式: = = .( , ∈N*,且 ).0!=1
(3)、全排列:n个不同元素全部取出的一个排列; ;
2、组合:
(1)、组合数公式: = = = ( , ∈N*,且 ); ;
(3)组合数的两个性质: = ; + = ;
3、二项式定理 :(1)、定理: ;
(2)、二项展开式的通项公式(第r +1项):
各二项式系数和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n (表示含n个元素的集合的所有子集的个数)。
奇数项二项式系数的和=偶数项二项式系数的和:Cn0+Cn2+Cn4+ Cn6+…=Cn1+Cn3+Cn5+ Cn7+…=2n -1
第十一章:概率:
1、概率(范围):0≤P(A) ≤1(必然事件: P(A)=1,不可能事件: P(A)=0)
2、等可能性事件的概率: .
3、互斥事件有一个发生的概率:A,B互斥: P(A+B)=P(A)+P(B);A、B对立:P(A)+ P(B)=1
4、独立事件同时发生的概率:独立事件A,B同时发生的概率:P(A•B)= P(A)•P(B).
n次独立重复试验中某事件恰好发生k次的概率