当前位置:首页 » 基础知识 » 怎样背数学单元知识清单
扩展阅读
钢结构基础短柱怎么计算 2025-01-12 17:15:31
儿童摄影套如何退款 2025-01-12 17:04:05

怎样背数学单元知识清单

发布时间: 2022-08-02 17:48:52

⑴ 如何有效地复习整理数学知识

数学的逻辑性很强,知识往往分散在不同阶段,学生对这些知识理解容易割裂。在阶段学习的基础上需对各领域内容进行系统整理与复习。整理与复习是要把平时相对独立进行教学的知识,其中特别重要的是把带有规律性的知识,以再现、整理、归纳等方法串联起来,进而加深学生对知识的理解、沟通。它既不同于新授课,更不同于练习课。其基本任务就是整理知识,使之系统化、清晰化,并具有拓展性。
它的重要特点就是在系统原理的指导下,对所学知识进行系统的整理,使之形成一个较完整的知识体系,这样有利于知识的系统化和对其内在联系的把握,便于融合贯通,做到梳理——训练——拓展,有序发展,真正提高复习的效果。
如何进行有效地复习与整理呢?
一、梳理归纳,沟通联系,强化基础
基础知识与基本技能是数学学习的基础,创新能力的高楼必须建立在扎实的双基基础之上,只有具备扎实的数学基础,学生才会出现创新的可能。教师要引导学生进行回顾与整理,使学生在平时学习的基础上沟通各部分之间的联系。在回顾与整理时,应以双基为基础,充分发挥学生的主体作用,引导学生自主整理知识,形成知识网络,体验数学的系统性。
但是在这样的学习过程中,必须注意两个问题:一是由于小学生受到知识结构和能力水平的限制,学生所要整理、沟通的知识内容的切人点一定要小,做到小而精,提出的学习要求要明确,以便学生能更好地进行整理;二是在学生整理时,教师应适当给予一些帮助,学生的整理尽管是不完整或粗糙的,教师也应给予充分地评价,并结合学生的整理,取其精华概括出较合理的知识网络图。
在平时的学习中,有些学生可能对基本概念的理解不够重视,有些学生则会在理解法则上有些模糊。对于易混淆的知识点,教师适时引导学生结合具体的事例进行理解,让学生在理解的基础上进行记忆;同时对学生已能熟练记忆的基础知识,再要求学生加强理解,弄清知识间的联系,分清类似知识点的区别,从而更好地掌握基础知识。如果学生对钝角的概念只是机械记忆,只记概念“大于90度,小于180度的角是钝角”,没有准确理解钝角概念的内涵与外延,会认为“钝角大于90度”是正确的。对于商不变规律“被除数和除同时乘或除以相同的数(零除外),商不变”。学生往往会把0除外忽视,还会影响分数的基本性质的学习。
二、合理训练,提高能力,发展思维
在回顾与整理的基础上,需要通过合理的训练以巩固学生所学知识。只有通过合理的训练、反馈,才能暴露出学生在学习中存在的问题,同时训练可以锻炼学生如何应用已有知识解决具体的数学问题的能力。学生在回顾与整理中具备了一定的数学基础知识与技能,那么在巩固与应用环节的训练中,首先要培养学生的应用意识,让他们学会合理地应用已有知识和常见的解题策略来解决数学问题。巩固与应用中的训练应注重训练量的合理,这就要求教师在训练中精选习题,注重习题的创新性,同时适当加强训练题的趣味性和生活味,以激发学生的兴趣,调节学生心理。
从教学实践来看,有时一些具有一定思维难度的数学题,也会激起学生的探究欲望。激发学生的学习兴趣与热情是平常教学,更是复习时很重要的教学手段:即通过创设情境激发学生学习的兴奋点,让学生在复习时也有新鲜感,从而以一种积极的心态投人到复习中,避免以往复习课那种沉闷的气氛及面面俱到的“炒冷饭”般的复习方式。
数学是思维的体操,思维活动是数学学科的特征,任何数学教学活动都不能缺少思维活动,复习课同样不例外。因此在复习的全过程中,教师必须以培养学生的思维能力为目标,注重学生思维的发展与提高,在发展与提高学生思维能力的过程中,教师应注重培养学生的解题的灵活性与创新意识。培养学生解题的灵活性,可通过一题多解进行,例如在解决“5米长的铁丝重250克,2500克的一捆铁丝有多长?”时,学生可能会先求出每米铁丝的重量再求这捆铁丝的重量或先求出每克铁丝的长度再求这捆铁丝的长或根据重量比与长度之比求出铁丝的长度。在这种一题多解的训练中,让学生体验解题的灵活性,发展他们的思维能力。同时,一题多解的训练,还可培养学生在解题过程中,当某种思路受阻时,可以换一种思路来解决问题。此外教师要在课堂上留给学生思考的时间和空间,鼓励他们发挥自己的创造力,让他们的想象得到充分的展现。让学生提数学问题,解决生活实际的问题。
三、培养良好的学习习惯,提高学习效益
在复习过程中,要注意培养学生良好的学习习惯。良好的学习习惯不仅能提高学习,而且一生受益。
总之,整理和复习课的形式要多样化,运用多种方法和策略,揭示数学知识之间的联系与区别,并帮助学生掌握相关规律,认识事物的本质,达到整理有序和复习有效的目的,使学生在获得对数学理解的同时,思维能力、个性品质、情感态度等方面都得到发展。

⑵ 二年级数学知识点有哪些

二年级数学必背知识点有如下:

1、被除数÷ 除数 = 商…….余数。

2、最小的一位数是1,最大的一位数是9;最小的两位数是10,最大的两位数是99;最小的三位数是100,最大的三位数是999;最小的四位数是1000,最大的四位数是9999;最大的五位数是10000。

3、长度单位转换时,大单位转小单位,数字增大(添“0”),小单位转大单位,数字减小(去“0”)。

4、结束时间-经过时间=开始时间。

5、减法时:要先算(分减分),再算(时减时),当“分”不够减时,向(时)借1当60分,60分与原来的“分”合在一起再减。

⑶ 怎样才能背会数学的概念,虽然理解了,但却背不会,总是忘记,非常苦恼,希望各位朋友帮帮我!

数学概念其实重在理解,在实践的过程中积累经验。
1.老师平时布置下来的家庭作业一定要认真完成,将理解不到位的知识点全部吃透;
2.平时做题时,要把各种题型对应到各知识点上,遇到一个知识点,就要记住它出现的特点,并将之融会贯通;
3.千万不要去试着背数学概念,应当尝试去预习和复习数学概念。预习自然不必说,因为预习的范围不外乎基本概念,但是复习的时候,也应该以基本概念为主,这样不但做题思路清晰,而且所有知识点都得到了总结和串联,会使得知识更加牢固。

以上就是我的学习方法,但愿能对楼主起到一定的帮助作用。

⑷ 数学五年级上册人教版知识点归纳 15条

小学五年级数学上册复习知识点归纳总结
第一单元小数乘法
1.小数乘法计算方法:按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
2、一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。
3、求近似数的方法一般有三种:
⑴四舍五入法 (常用) ; ⑵进一法; ⑶去尾法
4、计算钱数,保留两位小数,表示精确到分。保留一位小数,表示精确到角。
5、小数四则运算顺序跟整数四则运算顺序是一样的。
6、运算定律和性质:
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
乘法:乘法交换律:a×b=b×a
乘法结合律:三个数相乘,先把前两个数相乘,再和最后一个数相乘,或先把后两个数相乘,再和第一个数相乘,积不变. (a×b)×c=a×(b×c)
乘法分配律:两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。 (a+b)×c=a×c+b×c或 (a-b)×c=a×c-b×c
减法性质:从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。 a-b-c=a-(b+c) a-b-c=a-c-b
除法性质:从一个数里连续除数两个数,我们可以除以两个除数的积,或者交换两个除数的位置。a÷b÷c=a÷(b×c) a÷b÷c=a÷c÷b
去括号: 括号前是加号的,去掉括号后,括号内的符号不变号;括号前是减号的,去掉括号后,括号内的符号要变号。
a+(b-c)=a+b-c a-(b-c)=a-b+c
第二单元小数除法
9、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
10、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数(把小数点向右移动相同的位数),使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:向右移动小数点时,如果被除数的位数不够,在被除数的末尾用0补足。
12、除法中的变化规律:①商不变性质:被除数和除数同时乘或除以同一个数(0除外),商不变。②除数不变,被除数乘或除以几,商随着乘或除以几。③被除数不变,除数乘或除以几,商就除以或乘几。④被除数大于除数,商就大于1;被除数小于除数,商就小于1。⑤一个数除以大于1的数,商就小于被除数;一个数除以小于1的数,商就大于被除数。⑥积不变性质:一个因数乘一个数,另一个除以同一个数(0除外),积不变。⑦一个因数不变,另一个数乘几,积就乘几。⑧一个因数不变,另一个因数除以几,积就除以几。
13、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 X
一个循环小数的小数部分,依次不断重复出现的数字。(如6.321321…的循环节是321,简便记法为6.321;如0.33…的循环节是3,简便记法为0.3。)循环小数是无限小数,无限小数不一定是循环小数。
14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。无限小数分为无限循环小数和无限不循环小数。
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面,最少看到一个面。圆柱体从上面看到的形状是圆形,从其他方向看到的是长形或正方形。球体无论从哪个角度看,看到的形状都是圆形。
第四单元简易方程
16、在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。加号、减号、除号以及数与数之间的乘号不能省略。
17、a×a可以写作a•a或a ,a 读作a的平方 2a表示a+a
(1a=a这里的“1”我们不写)
18、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式 必须有未知数,两者缺一不可)。使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。
19、解方程原理:天平平衡
等式性质一:方程两边同时加上或减去同一个数,左右两边仍然相等。等式性质二:方程两边同时乘或除以同一个不为0数,左右两边仍然相等。
21、所有的方程都是等式,但等式不一定都是方程。
22、方程的检验过程:方程左边 = 方程右边
23、方程的解是一个数; 解方程式是一个计算过程。 所以,X=…是方程的解。
常见的等量关系:①路程=速度×时间
②工作总量=工作效率×工作时间
③总价=单价 × 数量
第五单元多边形的面积
23、长方形周长=(长+宽)×2 字母公式:C=(a+b)×2
长方形面积=长×宽 字母公式:S=ab
正方形周长=边长×4 字母公式:C=4a
正方形面积=边长×边长 字母公式:S=a2
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 字母公式: S=ah÷2
(三角形的底=面积×2÷高; 三角形的高=面积×2÷底)
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2(上底=面积×2÷高-下底,下底=面积×2÷高-上底;
高=面积×2÷(上底+下底) )
25、三角形面积公式推导: 平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;因为长方形面积=长×宽,所以平行四边形面积=底×高,长方形的面积等于平行四边形的面积。 平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于等底等高三角形面积的2倍。
27两个完全一样的梯形可以拼成一个平行四边形。
平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
29、长方形框架拉成平行四边形,周长不变,面积变小。
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码。
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)
0 5 4 0 0 1
前3位表示邮区, 前4位表示县(市),最后2位表示投递局
35、身份证18位,如130521197803010019
13表示河北省 05表示邢台市 21表示邢台县 19780301是出生日期 001是顺序码 9校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女。

⑸ 高中的数学知识点怎么样才能记住啊

高中数学知识点记忆方法与技巧 1.口诀记忆法 高中数学中,有些方法如果能编成顺口溜或歌诀,可以帮助记忆。例如, 根据一元二次不等式 ax2+bx+c>0(a>0

⑹ 最新最全人教版小学四年级数学下册知识点总结

来上新啦,2021人教版的:

四年级下册数学复习资料全册1-8单元知识点归纳

第一单元 四则运算

1.加、减的意义和各部分间的关系:

(1)把两个数合并成一个数的运算,叫做加法。

(2)相加的两个数叫做加数。加得的数叫做和。

(3)已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。

(4)在减法中,已知的和叫做被减数……。减法是加法的逆运算。

(5)加法各部分间的关系:和=加数+加数加数=和-另一个加数

(6)减法各部分间的关系:差=被减数-减数

减数=被减数-差

被减数=减数+差

2.乘、除法的意义和各部分间的关系

(1)求几个相同加数的和和的简便运算,叫做乘法。

(2)相乘的两个数叫做因数。乘得的数叫做积。

(3)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

(4)在除法中,已知的积叫做被除数……。除法是乘法的逆运算。

(5)乘法各部分间的关系:

积=因数×因数

因数=积÷另一个因数

(6)除法各部分间的关系:

商=被除数÷除数

除数=被除数÷商

被除数=商×除数

(7)有余数的除法,

被除数=商×除数+余数

3.加法、减法、乘法、除法统称为四则运算

4.四则混和运算的顺序

(1)在没有括号的算式里,如果只有加、减法,或者只有乘、除法,都要按(从左往右)的顺序计算;

(2)在没有括号的算式里,如果既有乘、除法,又有加、减法,要先算(乘、除法),后算(加、减法);(先乘除,后加减)

(3)在有括号的算式里,要先算括号里面的,后算括号外面的。

5.有关 0 的计算

①一个数和0相加,结果还得原数:a+0=a 0+a=a

②一个数减去0,结果还得这个数:a-0=a

③一个数减去它自己,结果得零:a-a=0

④一个数和0相乘,结果得0:a×0=0 ;0×a=0

⑤0除以一个非0的数,结果得0:0÷a=0;

⑥0不能做除数:a÷0=(无意义)

6.租船问题。解答租船问题的方法:先假设、再调整。

第二单元 观察物体二

1.正确辨认从上面、前面、左面观察到物体的形状。

2.观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。

3.从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。

4.从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。

5.从不同的位置观察,才能更全面地认识一个物体。

第三单元 运算定律

……

更多详细内容请见网络文库:2021人教版小学四年级下册数学全册1-8单元知识点归纳

整理不易,如有帮助,请予采纳。

⑺ 高中必背知识点数学

教版高中数学必背知识点

1.课程内容:

必修课程由5个模块组成:

必修1:集合、函数概念与基本初等函数(指、对、幂函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

2.重难点及考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数、圆锥曲线

高考相关考点:

⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用

⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

⑻ 最新人教版四年级下册数学知识点总结

这里有最新2021人教版的:

四年级下册数学复习资料全册1-8单元知识点归纳


第一单元 四则运算

1.加、减的意义和各部分间的关系:

(1)把两个数合并成一个数的运算,叫做加法。

(2)相加的两个数叫做加数。加得的数叫做和。

(3)已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。

(4)在减法中,已知的和叫做被减数……。减法是加法的逆运算。

(5)加法各部分间的关系:和=加数+加数加数=和-另一个加数

(6)减法各部分间的关系:差=被减数-减数

减数=被减数-差

被减数=减数+差

2.乘、除法的意义和各部分间的关系

(1)求几个相同加数的和和的简便运算,叫做乘法。

(2)相乘的两个数叫做因数。乘得的数叫做积。

(3)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

(4)在除法中,已知的积叫做被除数……。除法是乘法的逆运算。

(5)乘法各部分间的关系:

积=因数×因数

因数=积÷另一个因数

(6)除法各部分间的关系:

商=被除数÷除数

除数=被除数÷商

被除数=商×除数

(7)有余数的除法,

被除数=商×除数+余数

3.加法、减法、乘法、除法统称为四则运算

4.四则混和运算的顺序

(1)在没有括号的算式里,如果只有加、减法,或者只有乘、除法,都要按(从左往右)的顺序计算;

(2)在没有括号的算式里,如果既有乘、除法,又有加、减法,要先算(乘、除法),后算(加、减法);(先乘除,后加减)

(3)在有括号的算式里,要先算括号里面的,后算括号外面的。

5.有关 0 的计算

①一个数和0相加,结果还得原数:a+0=a 0+a=a

②一个数减去0,结果还得这个数:a-0=a

③一个数减去它自己,结果得零:a-a=0

④一个数和0相乘,结果得0:a×0=0 ;0×a=0

⑤0除以一个非0的数,结果得0:0÷a=0;

⑥0不能做除数:a÷0=(无意义)

6.租船问题。解答租船问题的方法:先假设、再调整。


第二单元 观察物体二

1.正确辨认从上面、前面、左面观察到物体的形状。

2.观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。

3.从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。

4.从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。

5.从不同的位置观察,才能更全面地认识一个物体。


第三单元 运算定律

……

更多详细内容请见网络文库:2021人教版小学四年级下册数学全册1-8单元知识点归纳

⑼ 怎么才能把数学知识点背会

数学学习方法
这里我们讲一下数学学习的方法.这是我们应用国外的快速学习方法,根据数学学科特点提出来的.由于代数学习法和几何学习法的不同,我们分别进行讨论.
一、代数学习法.
抄标题,浏览定目标.
阅读并记录重点内容.
试作例题.
快做练习,归纳题型.
回忆小结
二、几何学习四大步.
1.①书写标题,浏览教材
②自我讲授,写出目录
2.①按目录,读教材
②自我讲授几何概念及定理
3.①阅读例题,形成思路
②写出解答例题过程
4.①快做练习.
②小结解题方法.
三.数学概念学习方法.
数学中有许多概念,如何让学生正确地掌握概念,应该指明学习概念需要怎样的一个过程,应达到什么程度.数学概念是反映数学对象本质属性的思维形式,它的定义方式有描述性的,指明外种延的,有种概念加类差等方式.一个数学概念需要记住名称,叙述出本质属性,体会出所涉及的范围,并应用概念准确进行判断.这些问题老师没有要求,不给出学习方法,学生将很难有规律地进行学习.
下面我们归纳出数学概念的学习方法:
阅读概念,记住名称或符号.
背诵定义,掌握特性.
举出正反实例,体会概念反映的范围.
进行练习,准确地判断.
四、学公式的学习方法
公式具有抽象性,公式中的字母代表一定范围内的无穷多个数.有的学生在学习公式时,可以在短时间内掌握,而有的学生却要反来复去地体会,才能跳出千变万化的数字关系的泥堆里.教师应明确告诉学生学习公式过程需要的步骤,使学生能够迅速顺利地掌握公式.
我们介绍的数学公式的学习方法是:
书写公式,记住公式中字母间的关系.
懂得公式的来龙去脉,掌握推导过程.
用数字验算公式,在公式具体化过程中体会公式中反映的规律.
将公式进行各种变换,了解其不同的变化形式.
将公式中的字母想象成抽象的框架,达到自如地应用公式.
五、数学定理的学习方法.
一个定理包含条件和结论两部分,定理必须进行证明,证明过程是连接条件和结论的桥梁,而学习定理是为了更好地应用它解决各种问题.
下面我们归纳出数学定理的学习方法:
背诵定理.
分清定理的条件和结论.
理解定理的证明过程.
应用定理证明有关问题.
体会定理与有关定理和概念的内在关系.
有的定理包含公式,如韦达定理、勾股定理、正弦定理,它们的学习还应该同数公式的学习方法结合起来进行.
六、初学几何证明的学习方法.
在初一第二学期,初二、高一立体几何学习的开始,学生总感到难以入门,以下的方法是许多老教师十分认同的,无论是上课还是自学,均可以开展.
看题画图.(看,写)
审题找思路(听老师讲解)
阅读书中证明过程.
回忆并书写证明过程.
七 .提高几何证明能力的化归法.
在掌握了几何证明的基本知识和方法以后,在能够较顺利和准确地表述证明过程的基础上,如何提高几何证明能力?这就需要积累各种几何题型的证明思路,需要懂得若干证明技巧.这样我们可以通过老师集中讲解,或者通过集中阅读若干几何证明题,而达到上述目的.
化归法是将未知化归为已知的方法,当我们遇到一个新的几何证明题时,我们需要注意其题型,找到关键步骤,将它化归为已知题型时就可结束.此时最重要的是记住化归步骤及证题思路即可,不再重视祥细的表述过程.
提高几何证明能力的化归法:
1.审题,弄清已知条件和求证结论.
2.画图,作辅助线,寻找证题途径.
3.记录证题途径的各个关键步骤.
4.总结证明思路,使证题过程在大脑中形成清淅的印象.
八、波利亚解题思考方法.
预见法
收集资料,进行组织.
辨认与回忆,充实与重新安排.
分离与组合.
回顾
解答问题法.
弄清问题.
拟定问题.
实现计划.
回顾.
解题过程自问法.
我选择的是怎样的一条解题途径.
我为什么作出这样的选择?
我现在已进行到了哪一阶段?
这一步的实施在整个解题过程中具有怎样的地位?
我目前所面临的主要困难是什么?
解题的前景如何?
九 、数学学习的基本思维方法.
1. 观察与实验
2.分析与综合
3.抽象与概括
4.比较与分类
5.一般化与特殊化
6.类比联想与归纳猜想
十、理解、巩固、应用、系统化四步学习法
1.理 内容,标志,阶段,过程.
2.巩 固:透彻理解,牢固记忆,多方联想,合理复习.
3.应 用:理论,实践,具体,综合.
4.系统化: ①明确系统内部各要素的属性.
②使各要素之间形成多方的联系.
③概括各要素的各种属性,形成整体性.
④同化于原知识系统之中.
十一、高效学习方法在数学学习中的应用
超级学习方法

请采纳,谢谢