当前位置:首页 » 基础知识 » 与派有关的数学知识
扩展阅读
心动建立在什么基础上 2024-11-02 16:30:13
有故事的歌词是什么歌 2024-11-02 16:30:11
还有什么更坏的经典说说 2024-11-02 16:29:20

与派有关的数学知识

发布时间: 2022-08-02 00:15:09

㈠ 数学中的派“π”到底是怎样得来的它的具体作用是什么

圆周率(π,读作pài)是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。
中国古算书《周髀算经》(约公元前2世纪)的中有“径一而周三”的记载,意即取π=3。[6]汉朝时,张衡得出,即(约为3.162)。这个值不太准确,但它简单易理解。[7]公元263年,中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。他说“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”,包含了求极限的思想。刘徽给出π=3.14的圆周率近似值,刘徽在得圆周率=3.14之后,将这个数值和晋武库中汉王莽时代制造的铜制体积度量衡标准嘉量斛的直径和容积检验,发现3.14这个数值还是偏小。于是继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率。
公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率和约率。密率是个很好的分数近似值,要取到才能得出比略准确的近似。[8](参见丢番图逼近)
在之后的800年里祖冲之计算出的π值都是最准确的。其中的密率在西方直到1573年才由德国人奥托(Valentinus Otho)得到,1625年发表于荷兰工程师安托尼斯(Metius)的着作中,欧洲称之为Metius' number。
约在公元530年,印度数学大师阿耶波多算出圆周率约为√9.8684。婆罗摩笈多采用另一套方法,推论出圆周率等于10的算术平方根。
阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家鲁道夫·范·科伊伦(Ludolph van Ceulen)于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。

㈡ 数学中的π指的是什么

π是圆周率(Pi),圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。

π是无限不循环小数,约等于3.141592654。

π也等于圆形之面积与半径平方之比,是精确计算圆周长、圆面积、球体积等几何形状的关键值,在分析学里,π可以严格地定义为满足sinx= 0的最小正实数x。

圆周率的具体介绍:

圆周率用希腊字母π(读作[paɪ])表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。

1665年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专着,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。

2019年3月14日,谷歌宣布圆周率现已到小数点后31.4万亿位。

2021年8月17日,美国趣味科学网站报道,瑞士研究人员使用一台超级计算机,历时108天,将着名数学常数圆周率π计算到小数点后62.8万亿位,创下该常数迄今最精确值记录。

㈢ 与π相关的公式有哪些

圆周率π是圆的周长和其直径的比值,这是一个常数,在数学中是非常重要的。这个数是一个无理数,也就说是一个无尽不循环的小数,大约为3.14159……,后面有无数个小数位,永远也写不尽。

经过数千年的努力,人类已经能够计算出相当精确的圆周率数值。它的计算公式有很多种,可以用无穷级数来表示。

数学家莱布尼茨发现的计算圆周率公式:

古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。

总结

圆周率用字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。

㈣ 派指的是多少度呀

派指的是180度。180度的单位是°,而派在这里的定义是半径为1的,角度为180°的圆弧的弧长。一个弧度就是跟半径相等的弧长与半径的比值,即一个弧度所应对的弧长跟半径是相等的。180度所对应的弧长与半径的比值即为派弧度,因此派即为180度。

派的由来

圆周率是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。

圆周率用希腊字母 π表示,是一个常数,是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。

而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

1965年,英国数学家约翰·沃利斯出版了一本数学专着,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。

㈤ 派是怎么算出来的

在半径为r的圆中,作一个内接正六边形。这时,正六边形的边长等于圆的半径r,因此,正六边形的周长等于6r。如果把圆内接正六边形的周长看作圆的周长的近似值,然后把圆内接正六边形的周长与圆的直径的比看作为圆的周长与圆直径的比,这样得到的圆周率是3,显然这是不精确的。

如果把圆内接正六边形的边数加倍,可以得到圆内接正十二边形;再加倍,可以得到圆内接正二十四边形……不难看出,当圆内接正多边形的边数不断地成倍增加时,它们的周长就越来越接近于圆的周长,也就是说它们的周长与圆的直径的比值,也越来越接近于圆的周长与圆的直径的比值。

根据计算,得到下列数据:
圆内接正多边形的边数 、内接正多边形 、边长 、内接正多边形 、周长 、内接正多边形周长与圆直径的比
6
12
24
48
96
192
384
768
……
1.00000000r
0.51763809r
0.26105238r
0.13080626r
0.06543817r
0.03272346r
0.01636228r
0.00818121r
……
6.00000000r
6.21165708r
6.26525722r
6.27870041r
6.28206396r
6.28290510r
6.28311544r
6.28316941r
……
3.00000000
3.10582854
3.13262861
3.13935021
3.14103198
3.14145255
3.14155772
3.14158471
……
这样,我们就得到了一种计算圆周率π的近似值的方法。

(5)与派有关的数学知识扩展阅读:

圆周率(圆的周长与直径的比值)

圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。

圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。

它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专着,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式 。

实验时期

一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率 = 25/8 = 3.125。 同一时期的古埃及文物,莱因德数学纸草书(Rhind Mathematical Papyrus)也表明圆周率等于分数16/9的平方,约等于3.1605。埃及人似乎在更早的时候就知道圆周率了。

英国作家 John Taylor (1781–1864) 在其名着《金字塔》(《The Great Pyramid: Why was it built, and who built it?》)中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。

公元前800至600年成文的古印度宗教巨着《百道梵书》(Satapatha Brahmana)显示了圆周率等于分数339/108,约等于3.139。

参考资料:网络_圆周率

㈥ π的来历是什么

π的来历是第十六个希腊字母的小写。这个符号,亦是希腊语 περιφρεια (表示周边,地域,圆周等意思)的首字母。1706年英国数学家威廉·琼斯(William Jones ,1675-1749)最先用“π”来表示圆周率 。1736年,瑞士大数学家欧拉也开始用。

的值都是一样,这样就定义出常数π。