当前位置:首页 » 基础知识 » 六年级数学下册学科知识树
扩展阅读
同学间应该注意什么 2025-01-12 23:12:19

六年级数学下册学科知识树

发布时间: 2022-08-01 19:27:15

1. 急需六年级下册数学知识树(人教版)!

归纳知识树是一个很好的学习方法,想必你也是一个热爱学习的同学吧!但是要靠自己哦,不能总是靠别人学习。只有自已认认真真的归纳,才能铭记于心。加油吧!

2. 六年级下册数学重要知识点

人教版 六年级下册数学知识总结
单元一 负数
1.为了表示两种相反的量,这里出现了一种新的数:-16.-500.像-16 ,-500,-3/8,-0.4,...这样的数叫做 {负数}.-3/8读作负八分之三。
2.而以前所学的16,2000,3/8,6.3,...这样的数叫做{正数}。正数前面也可以加“+”号,例如:+16,+3/8。+6.3等(也可以省去“+”号)+6.3读作正六点三。
3.0既不是正数,也不是负数。
4.所有正数都在0的左边,也就是负数比0小,而正数都比0大,负数都比正数小。
单元二 圆柱与圆锥
1.圆柱的两个圆面叫做底面;周围的面叫做侧面;两个底面之间的距离叫做高。
2.圆柱的表面积=圆柱的侧面积+两个底面的面积
3.圆柱的侧面积=底圆周长x高 vXs h
4.v圆锥=1/3v圆柱=1/3sh
单元三 比例
1.像 ( 操场上的国旗2.4:1.6=3/2 教室里的国旗:60:40=3/2 所以2.4:1.6=60:40 也可以写成2.4/1.6=60/40 )这样表示两个数的比相等的式子叫做比例。
2组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
3.在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
4.根据比例的基本性质,如果一直比例中的任何第三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例.
5.因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定,我们就说体积和高度成{正比例关系},体积和高度叫做成{正比例的量}。
6.如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用 y/x=k(一定)。
7.生活中的正比例:水的质量和体积成正比例;如果长方形的宽一定,长方形的面积和长成正比例。
8..因为水的体积一定,所以水的高度随着底面积的变化而变化。底面积增加,,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成{反比例关系},高度和底面积叫做成反比例的量。
9.如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系可以用 x X y=k(一定)。
10.一幅图的图上距离和实际距离的北,叫做这幅图的{比例尺}。
11.根据:图上距离/实际距离=比例尺“可以列出方程。
12.因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水吨数的比值相等。
13.因为书的总数一定,所以包数和每包的本书成反比例,也就是说,每包的本书和包数的乘积相等。

3. 六年级下册数学概念整理

一.圆柱与圆锥
1.圆柱由两个底面一个侧面组成,有无数条高。 例子:手电筒 电池 玻璃杯 茶罐
圆锥由一个底面一个侧面组成,只有一条高。 例子:冰淇淋的蛋筒 圣诞帽 金字塔
2.圆柱的侧面积=底面周长*高 表面积=底面积*2+侧面积 公式:S侧=CH
3.圆柱的体积=底面积=高 公式:V=SH
4.圆锥的体积=底面积*高*三分之一 公式:三分之一SH

二.正比例和反比例
1.判断是否成正比例:(1).一种量增加或减少另一种量也相应地增加或减少。(2).它们的比值(即商)一定(即不变)
2.成正比例,所有的点都是在同一条直线上。
3.判断是否成反比例:(1).一种量增加另一种量随着减少。(2).它们的积一定(即不变)
4.成反比例,所有的点可以连成一条曲线。
5.只有长和宽都按相同的比来画,画的才像。
6.比例尺的前项一般化简成1(除细小零件外) 比例尺的前项和后项所表示的长度单位必须是同级单位。

如果需要举例子的话,那么书上自己选择几题。

绝对原创,我就是这么写的,希望采纳!!

4. 六年级数学知识树

数学的知识框架,就是你们这一年的数学书里主要分为几个模块,这是主干(根据内容决定),比如说你们的目录(有主目录,次目录)就是一种框架,可以做参考
比如:六年级有2本书,你可以先写第一本书,书里有12345678个章节(我也不知道有几个章节,那几个有联系,这是打个比方,作为模板),每个章节讲得都是不同的内容,1章一般是总论,而23章中讲得联系比较大,45章节有联系,67也有联系,你就把他们之间的联系找出来,归纳一类,而后,归纳这个章节的知识点,从主要概括到最后具体的内容解释,这样就完成了
例子:
六年级数学
/ \
/ \
上册 下册
/ ! \
分别是 -- 23 45 67章的概要
知识点-- / ! \
(这是竖着画的,因为是是知识树嘛!我们现在习惯话横着的,就是总的在左边,然后从上到下竖着分,都一样,习惯而已)
可以依次向下分,我就是举个例子,具体怎么样,你可以参考你们的课本目录,而且照我的说法你的工作量会很大,这个你也可以简略写,不用分的那么细 ,因为我们做知识框架的目的就是为了方便记忆,使看的容易一些,让那个繁琐的知识点联系起来,有条理一些罢了,所以,这也是因人而异的
希望对你有所帮助!!

5. 六年级下册数学公式整理有哪些

六年级下册数学公式如下:

1、圆柱的侧面积=底面周长×高。

2、正方体的表面积=棱长×棱长×6 S =6a。

3、圆柱的侧面积=底面圆的周长×高S=ch。

4、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数。

5、被除数÷除数=商被除数÷商=除数商×除数=被除数。

6. 下册数学知识树怎么画

首先画树的根部,树根里用文字写上单元的主要内容,然后画云朵或椭圆的圈作为树的枝和叶,里边写上每一章的课程内容,然后在外边分叉,周围依次画几个小的云朵或者圆圈。里边分别写上每一课的大纲或者大体内容。
学生一般学习的东西比较多,经常会出现遗忘或者不清楚重点的情况,尤其是数学,各种计算,方程,公式等,很多需要记忆的东西,这时,将需要记忆的东西进行分类,放入知识树里,美观不凌乱,也更方便记忆和整理。

7. 六年级下册数学必考重点有哪些

一、负数

1、在熟悉的生活情境中初步认识负数,能正确的读.写正数和负数,知道0既不是正数也不是负数。

2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

3、能借助数轴初步学会比较正数.0和负数之间的大小。

二、圆柱和圆锥

1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面.侧面和高。认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积.表面积的计算方法,以及圆柱.圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察,设计和制作圆柱,圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

三、比例

1、理解比例的意义和基本性质,会解比例。

2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育

四、统计

1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。

2、能根据统计图提供的信息,做出正确的判断或简单预测。

五、数学广角

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、通过“抽屉原理”的灵活应用感受数学的魅力。

8. 鲁教版六年级下册数学知识点

比例表示两个相等的式子叫做比例。在比例里,两个外项的积等于两个内项。这叫做《比例的基本性质》根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。求比例中的未知项,叫做解比例如: x:320=1:10 10x =320×1 x =320÷10 x =32 一、负数:1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。3、能借助数轴初步学会比较正数、0和负数之间的大小。二、圆柱和圆锥1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。三、比例1、理解比例的意义和基本性质,会解比例。2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育四、统计1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。2、能根据统计图提供的信息,做出正确的判断或简单预测。五、数学广角1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2、通过“抽屉原理”的灵活应用感受数学的魅力。六、整理和复习1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。 2、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。 3、掌握所学几何形体的特征;能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用;巩固所学的简单的画图、测量等技能;巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识;能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。 4、掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据做出简单的判断与预测,会求一些简单事件的可能性,能够解决一些计算平均数的实际问题。 5、进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。

9. 北师大版小学数学六年级知识树课件

http://wenku..com/view/961f652e915f804d2b16c1e6.html

10. 小学数学六年级下册知识点

下面是我的复习资料。
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)小学奥数公式
和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题的公式
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题的公式
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
植树问题的公式
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题的公式
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题的公式
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题的公式
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题的公式
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题的公式
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
参考资料:网络知道
(一)数的读法和写法 1.
整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。 3.
小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。 4.
小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。 5.
分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。 6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。 8.
百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(二)数的改写
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。 1.
准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000
改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。 2.
近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。 3.
四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略
345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。 4. 大小比较 1.
比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2.
比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。 (三)数的互化
1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。 2.
分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。 3.
一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。 4.
小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。 5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 6.
分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。 7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(四)数的整除 1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。 2.
求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。
3.
求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质;
两个合数的公约数只有1时,这两个合数互质。 (五) 约分和通分 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
小数
1 小数的意义 把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。 2小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、
5.26 都是带小数。 有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54
” 。 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有
一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。
分数
1 分数的意义 把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2 分数的分类 真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3 约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。 分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数 1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率
或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。