当前位置:首页 » 基础知识 » 数学初二下册必考知识点
扩展阅读
佛山儿童口罩在哪里买 2025-01-13 02:26:54
共筑平安防恐知识大全 2025-01-13 02:26:12

数学初二下册必考知识点

发布时间: 2022-08-01 10:52:46

❶ 求初二下册数学重点知识点

没采纳啊。我来吧!
有方法

我只学了一半先说一点吧, first:自己先归纳一下 每个的概念,注意自己归纳!实在不会看看书然后重点记住,,,概念要理清, 再多难题也是从概念延伸过来的,∴概念清了就很好做了。 要是概念清了的话,一般月考其中期末不会很难,再做做基础题型,不断训练基础,基础好了再写写难题,一般基础概念知道了 都能到110左右,我就是啊,还有注重下细节.....
就这样吧我还要查捏。
不许抄,我打了这么久!~
前面一半重点的是平行四边形和函数啦,,慢慢看
有疑问就找我呗我经常在线的!

❷ 初二数学下的知识点有哪些

知识要点 :1.分式的有关概念
设A、B表示两个整式.如果B中含有字母,式子 就叫做分式.注意分母B的值不能为零,否则分式没有意义
分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简

2、分式的基本性质
(M为不等于零的整式)

3.分式的运算 (分式的运算法则与分数的运算法则类似).
(异分母相加,先通分);

4.零指数
5.负整数指数
注意正整数幂的运算性质
可以推广到整数指数幂,也就是上述等式中的m、 n可以是O或负整数.

6、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去.

7、列分式方程解应用题的一般步骤:

(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位)。

正比例、反比例、一次函数
第一象限(+,+),第二象限(-,+)第三象限(-、-)第四象限(+,-);
x轴上的点的纵坐标等于0,反过来,纵坐标等于0的点都在x轴上,y轴上的点的横坐标等于0,反过来,横坐标等于0的点都在y轴上,

若点在第一、三象限角平分线上,它的横坐标等于纵坐标,若点在第二,四象限角平分线上,它的横坐标与纵坐标互为相反数;

若两个点关于x轴对称,横坐标相等,纵坐标互为相反数;若两个点关于y轴对称,纵坐标相等,横坐标互为相反数;若两个点关于原点对称,横坐标、纵坐标都是互为相反数。

1、 一次函数,正比例函数的定义

(1)如果y=kx+b(k,b为常数,且k≠0),那么y叫做x的一次函数。

(2)当b=0时,一次函数y=kx+b即为y=kx(k≠0).这时,y叫做x的正比例函数。

注:正比例函数是特殊的一次函数,一次函数包含正比例函数。

2、正比例函数的图象与性质

(1)正比例函数y=kx(k≠0)的图象是过(0,0)(1,k)的一条直线。

(2)当k>0时 y随x的增大而增大 直线y=kx经过一、三象限 从左到右直线上升。

当k<0时 y随x的增大而减少 直线y=kx经过二、四象限 从左到右直线下降。

3、一次函数的图象与性质

(1) 一次函数y=kx+b(k≠0)的图象是过(0,b)(- ,0)的一条直线。

注:(0,b)是直线与y轴交点坐标,(-,0)是直线与x轴交点坐标.

(2)当k>0时 y随x的增大而增大 直线y=kx+b(k≠0)是上升的

当k<0时 y随x的增大而减少 直线y=kx+b(k≠0)是下降的

4、一次函数y=kx+b(k≠0, k b 为常数)中k 、b的符号对图象的影响

(1)k>0, b>0 直线经过一、二、三象限

(2)k>0, b<0 直线经过一、三、四象限

(3)k<0, b>0 直线经过一、二、四象限

(4)k<0, b<0 直线经过二、三、四象限

5、对一次函数y=kx+b的系数k, b 的理解。

(1)k(k≠0)相同,b不同时的所有直线平行,即直线;直线(均不为零,为常数)

(2)k(k≠0)不同,b相同时的所有直线恒过y轴上一定点(0,b),例如:直线y=2x+3, y=-2x+3, 均交于y轴一点(0,3)

6、直线的平移:所谓平移,就是将一条直线向左、向右(或向上,向下)平行移动,平移得到的直线k不变,直线沿y轴平移多少个单位,可由公式得到,其中b1,b2是两直线与y轴交点的纵坐标,直线沿x轴平移多少个单位,可由公式求得,其中x1,x2是由两直线与x轴交点的横坐标。

7、直线y=kx+b(k≠0)与方程、不等式的联系

(1)一条直线y=kx+b(k≠0)就是一个关于y的二元一次方程
(2)求两直线的交点,就是解关于x,y的方程组

(3)若y>0则kx+b>0。若y<0,则kx+b<0

(4)一元一次不等式,y1≤kx+b≤y2( y1,y2都是已知数,且y1<y2)的解集就是直线y=kx+b上满足y1≤y≤y2那条线段所对应的自变量的取值范围。

(5)一元一次不等式kx+b≤y0(或kx+b≥y0)( y0为已知数)的解集就是直线y=kx+b上满足y≤y0(或y≥y0)那条射线所对应的自变量的取范围。

8、确定正比例函数与一次函数的解析式应具备的条件

(1)由于比例函数y=kx(k≠0)中只有一个待定系数k,故只要一个条件(如一对x,y的值或一个点)就可求得k的值。

(2) 一次函数y=kx+b中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点,或两对x,y的值。

9、反比例函数

(1) 反比例函数及其图象

如果,那么,y是x的反比例函数。

反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象

(2)反比例函数的性质

当K>0时,图象的两个分支分别在一、三象限内,在每个象限内, y随x的增大而减小;

当K<0时,图象的两个分支分别在二、四象限内,在每个象限内,y随x的增大而增大。

(3)由于比例函数中只有一个待定系数k,故只要一个条件(如一对x,y的值或一个点)就可求得k的值。

回答人的补充 2009-08-21 14:04 三角形相似

相似三角形的判定方法:

(1)若DE‖BC(A型和X型)则△ADE∽△ABC

(2)射影定理 若CD为Rt△ABC斜边上的高(双直角图形)

❸ 八年级下册数学的知识点有哪些

第十六章 分式
1. 分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子 叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零
2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
3.分式的通分和约分:关键先是分解因式
4.分式的运算:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则: 分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减
混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。
5. 任何一个不等于零的数的零次幂等于1, 即 ;当n为正整数时,
6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数)
(1)同底数的幂的乘法: ;
(2)幂的乘方: ;
(3)积的乘方: ;
(4)同底数的幂的除法: ( a≠0);
(5)商的乘方: ();(b≠0)
7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤 :
(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.
增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.
应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题. (2)数字问题 在数字问题中要掌握十进制数的表示法. (3)工程问题 基本公式:工作量=工时×工效. (4)顺水逆水问题 v顺水=v静水+v水. v逆水=v静水-v水.
8.科学记数法:把一个数表示成 的形式(其中 ,n是整数)的记数方法叫做科学记数法.
用科学记数法表示绝对值大于10的n位整数时,其中10的指数是
用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)


第十七章 反比例函数
1.定义:
2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点
3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;
当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
5.反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。

1、反比例函数的概念
一般地,函数 (k是常数,k 0)叫做反比例函数。反比例函数的解析式也可以写成 的形式。自变量x的取值范围是x 0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x 0,函数y 0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质
反比例函数

k的符号 k>0 k<0
图像
y

O x

y

O x

性质 ①x的取值范围是x 0,
y的取值范围是y 0;
②当k>0时,函数图像的两个分支分别
在第一、三象限。在每个象限内,y
随x 的增大而减小。 ①x的取值范围是x 0,
y的取值范围是y 0;
②当k<0时,函数图像的两个分支分别
在第二、四象限。在每个象限内,y
随x 的增大而增大。

4、反比例函数解析式的确定
确定及诶是的方法仍是待定系数法。由于在反比例函数 中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
5、反比例函数中反比例系数的几何意义
如下图,过反比例函数 图像上任一点P作x轴、y轴的垂线PM,PN,则所得的矩形PMON的面积S=PM PN= 。


第十七章 反比例函数
1.定义:形如y= (k为常数,k≠0)的函数称为反比例函数。其他形式xy=k

2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点
3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;
当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

❹ 初二数学下册知识点

第一章 轴对称图形
1. 成轴对称的定义:
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2. 轴对称图形的定义:
把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形是轴对称图形,这条直线就是对称轴。

3. 线段垂直平分线的定义:
垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。

4. 轴对称的性质:
(1)成轴对称的两个图形全等.
(2)成轴对称的两个图形的对应线段相等,对应角相等.
(3)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.

5. 关于线段:
(1)线段是轴对称图形,有两条对称轴,线段的垂直平分线是它的对称轴.
(2)线段垂直平分线的性质:
线段的垂直平分线上的点到线段两端的距离相等。
反过来:
到线段两端距离相等的点,在这条线段的垂直平分线上。

6. 关于角:
(1)角是轴对称图形,有一条对称轴,角平分线所在直线是它的对称轴.
(2)角平分线的性质:
角平分线上的点到角角的两边距离相等。
反过来:
角的内部到角的两边距离相等的点,在这个角的平分线上。

7. 关于等腰三角形:
(1)等腰三角形是轴对称图形,有一条对称轴,顶角平分线所在直线是它的对称轴.
(2)等腰三角形的两个底角相等(“等边对等角”)
(3)如果一个三角形有两个角相等,那么这两个角所对的边也相等(“等角对等边”)
(4)三线合一:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

8. 关于直角三角形:
(1)直角斜边上的中线等于斜边的一半。
(2)直角三角形中,30°角所对的直角边等于斜边的一半。
反过来:
在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°.

9. 关于等边三角形:
(1)等边三角形是轴对称图形,有三条对称轴.
(2)等边三角形的判定: ①三边相等的三角形是等边三角形
②三个角相等的三角形是等边三角形
③两个角等于60°的三角形是等边三角形
④一个角等于60°的等腰三角形是等边三角形

10. 关于等腰梯形:
(1)等腰梯形是轴对称图形,过两底中点的直线是它的对称轴.
(2)等腰梯形的性质:
①等腰梯形在同一底上的两个角相等。
②等腰梯形的对角线相等。
(3)等腰梯形的判定:
①两腰相等的梯形是等腰梯形。
②在同一底上的两个角相等的梯形是等腰梯形。
③对角线相等的梯形是等腰梯形。

第二章 勾股定理与平方根

1. 勾股定理的定义:
直角三角形两直角边的平方和等于斜边的平方。
2. 判定直角三角形的方法:
如果三角形的三边长 、 、 满足 ,那么这个三角形是直角三角形。
3. 平方根的定义:
如果一个数的平方等于 ,那么这个数叫做 的平方根,也称为二次方根。也就是说,如果 ,那么 就叫做 的平方根。

4. 平方根的性质:
一个正数有两个平方根,它们互为相反数;
0只有一个平方根,是0;
负数没有平方根。

5. 算术平方根的定义:
正数 有两个平方根,其中正的平方根,也叫做 的算术平方根。

6. 立方根的定义:
如果一个数的立方等于 ,那么这个数叫做 的立方根,也称为三次方根。也就是说,如果 ,那么 就叫做 的立方根。

7. 立方根的性质:
正数的立方根是正数;
负数的立方根是负数;
0的立方根是0。

8. 无理数的定义:
无限不循环小数称为无理数。

9. 实数与数轴上的点一一对应。

第三章 第三章 中心对称图形(一)

1.旋转的定义:
在平面内,将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转。这个定点称为旋转中心,旋转的角度称为旋转角。图形的旋转不改变图形的形状、大小。

2.旋转前后的图形全等,对应点到旋转中心的距离相等,每一对对应点与旋转中心的连线所成的角彼此相等

3.成中心对称的定义:
把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称。这个点叫做对称中心。两个图形中的对应点叫做对称点。

4.成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;
反过来:如果两个图形的对应点连成的线段都经过某一点,并且被这个点所平分,那么这两个图形一定关于这一点成中心对称。

5.中心对称图形的定义:
把一个平面图形绕着某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。这个点就是它的对称中心。

6.关于平行四边形:
(1) 平行四边形的定义:
两组对边分别平行的四边形叫做平行四边形。
(2)平行四边形的性质:
①平行四边形是中心对称图形。
②平行四边形的对边相等。
③平行四边形的对角相等。
④平行四边形的对角线互相平分。
(3)平行四边形的判定:
①两组对边分别平行的四边形是平行四边形。
②两组对边分别相等的四边形是平行四边形。
③一组对边平行且相等的四边形是平行四边形。
④两组对角分别相等的四边形是平行四边形。
⑤两条对角线互相平分的四边形是平行四边形。

7.关于矩形:
(1)矩形的定义:
有一个角是直角的平行四边形叫做矩形。
(2)矩形的特殊性质:
①矩形既是轴对称图形,又是中心对称图形。
②矩形的四个角都是直角。
③矩形的对角线相等。
(3)矩形的判定:
①有一个角是直角的平行四边形是矩形。
②三个角是直角的四边形是矩形。
③对角线相等的平行四边形是矩形。

8.关于菱形:
(1)菱形的定义:
有一组邻边相等的平行四边形叫做菱形。
(2)菱形的特殊性质:
①菱形既是轴对称图形,又是中心对称图形。
②菱形的四条边都相等。
③菱形的对角线互相垂直。
(3)菱形的判定:
①有一组邻边相等的平行四边形是菱形。
②四条边相等的四边形是菱形。
③对角线垂直的平行四边形是菱形。

9.关于正方形:
(1)正方形的特殊性质:
①正方形是特殊的平行四边形。
②正方形是特殊的矩形。
③正方形是特殊的菱形。
④正方形既是轴对称图形,又是中心对称图形。
(2)正方形的判定:
①有一组邻边相等的矩形是正方形。
②对角线垂直的矩形是正方形。
③有一个角为直角的菱形是正方形。
④对角线相等的菱形是正方形。

❺ 初二数学都有哪些知识点

《新初二曹.笑数学秋季培优班(人教版高清视频)》网络网盘资源下载

链接:

提取码: q2vy

若资源有问题欢迎追问~

❻ 初二下学期数学知识点归纳是什么

初二下学期数学知识点如下:

1、乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。

2、异分母分式相加减,先通分,变为同分母的分式,再加减。

3、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

4、如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

5、一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组。

❼ 初2数学下册书所有知识点

初二数学下知识点总结
平移与旋转
旋转
旋转的定义:
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
旋转的性质:
旋转后得到的图形与原图形之间有:对应点到旋转中心的距离相等,旋转角相等。
中心对称
中心对称的定义:
如果一个图形绕某一点旋转180度后能与另一个图形重合,那么这两个图形叫做中心对称。
中心对称图形的定义:
如果一个图形绕一点旋转180度后能与自身重合,这个图形叫做中心对称图形。
中心对称的性质:
在中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。
轴对称
轴对称的定义:
如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对
称图形,这条直线叫做对称轴。
轴对称图形的性质:
①角的平分线上的点到这个角的两边的距离相等。
②线段垂直平分线上的点到这条线段两个端点的距离相等。
③等腰三角形的“三线合一”。
3.轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。
图形变换
图形变换的定义:图形的平移、旋转、和轴对称统称为图形变换。
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。
特别地,当一次函数中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。
2、一次函数的图像
所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。(如下图)
4.
正比例函数的性质
一般地,正比例函数有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质
一般地,一次函数有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。

❽ 初二下学期数学知识点归纳内容是什么

1、无限小数都是无理数无限小数分:为无限循环小数和无限不循环小数,其中无限循环小数是有理数,只有无限不循环的小数才是无理数。

2、无理数包括正无理数、负无理数和零。受思维习惯的影响,有些同学错误认为正无理数与负无理数之间应有零,零也是无理数,其实零是一个有理数,因此,无理数只分为正无理数和负无理数两类。

3、带根号的数是无理数。是有理数2,是有理数-2,可见带根号的数不一定是无理数。

4、无理数是用根号形式表示的数。是无理数,但并不是用根号形式表示的,再如:0.1010010001(两个1之间依次多一个),亦为不带根号的无理数。

5、无理数是开方开不尽的数。无理数并非由开方的结果来定义的,事实上,如,0.232232223,等无理数,都不是由开方得到的。

6、两个无理数的和、差、积、商仍是无理数。两个无理数的和,差,积,商不一定是无理数,如:等都是有理数。

❾ 初二下册数学知识点有哪些呢


1、勾股定理,主要包括勾股定理的证明,利用勾股定理求直角三角形中的边长问题,解决一些实际问题,结合尺规作图作一些边长为无理数的作图题等等。2、勾股

❿ 八年级下册数学知识点总结

第十六章 分式 1. 分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子BA叫做分式。 分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 (0≠C) 3.分式的通分和约分:关键先是分解因式 4.分式的运算: 分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方法则: 分式乘方要把分子、分母分别乘方。,ababacadbcadbccccbdbdbdbd±±±=±=±= 分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减 混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。 5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=aa;当n为正整数时,nnaa1=− ()0≠a 6.正整数指数幂运算性质正整数指数幂运算性质正整数指数幂运算性质正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数) (1)同底数的幂的乘法:nmnmaaa+=⋅; (2)幂的乘方:mnnmaa=)(; (3)积的乘方:nnnbaab=)(; (4)同底数的幂的除法:nmnmaaa−=÷( a≠0); (5)商的乘方:nnnbaba=)(();(b≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。 解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。 解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。 解分式方程的步骤 : (1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根. 增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。 分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答. 应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题. (2)数字问题 在数字问题中要掌握十进制数的表示法. (3)工程问题 基本公式:工作量=工时×工效. (4)顺水逆水问题 v顺水=v静水+v水. v逆水=v静水-v水. 8.科学记数法:把一个数表示成na10×的形式(其中101<≤a,n是整数)的记数方法叫做科学记数法. 用科学记数法表示绝对值大于10的n位整数时,其中10的指数是1−n 用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0) 第十七章 反比例函数 1.定义:形如y=xk(k为常数,k≠0)的函数称为反比例函数。其他形式xy=k 1−=kxyxky1= 2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。 4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。 第十八章 勾股定理 1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。 2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。 3.经过证明被确认正确的命题叫做定理。 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 第十九章 四边形 平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。 平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。 平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形; 3.两组对角分别相等的四边形是平行四边形; 4.一组对边平行且相等的四边形是平行四边形。 三角形的中位线平行于三角形的第三边三角形的中位线平行于三角形的第三边三角形的中位线平行于三角形的第三边三角形的中位线平行于三角形的第三边,,,,且等于第三边的一半且等于第三边的一半且等于第三边的一半且等于第三边的一半。。。。 直角三角形斜边上的中线等于斜边的一半直角三角形斜边上的中线等于斜边的一半直角三角形斜边上的中线等于斜边的一半直角三角形斜边上的中线等于斜边的一半。。。。 矩形的定义:有一个角是直角的平行四边形。 矩形的性质: 矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD 矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。 2.对角线相等的平行四边形是矩形。 3.有三个角是直角的四边形是矩形。 菱形的定义 :邻边相等的平行四边形。 菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 菱形的判定定理: 1.一组邻边相等的平行四边形是菱形。 2.对角线互相垂直的平行四边形是菱形。 3.四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线) 正方形定义:一个角是直角的菱形或邻边相等的矩形。 正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形。 正方形判定定理: 1.邻边相等的矩形是正方形。 2.有一个角是直角的菱形是正方形。 梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。 直角梯形的定义:有一个角是直角的梯形 等腰梯形的定义:两腰相等的梯形。 等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。 等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。 解梯形问题常用的辅助线:如图 线段的重心就是线段的中点。 平行四边形的重心是它的两条对角线的交点。 三角形的三条中线交于疑点,这一点就是三角形的重心。 宽和长的比是21-5(约为0.618)的矩形叫做黄金矩形。 第二十章 数据的分析 1.加权平均数:加权平均数的计算公式。 权的理解:反映了某个数据在整个数据中的重要程度。 学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。 2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。 3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。 4.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。 5. 方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。 数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流 6. 平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。