当前位置:首页 » 基础知识 » 数学初一全部重要知识点人教版
扩展阅读
大雁是什么歌词 2024-11-03 00:19:26

数学初一全部重要知识点人教版

发布时间: 2022-07-31 11:44:38

Ⅰ 初一数学知识点有哪些

初一数学知识点如下:

1、数轴的三要素:原点、正方向、单位长度。

2、绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

3、加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

4、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

5、多项式:几个单项式的和叫做多项式。

Ⅱ 初一数学全部知识点有哪些

1、正数与负数

在以前学过的0以外的数前面加上负号“—”的数叫负数。

与负数具有相反意义,即以前学过的0以外的数叫做正数。

2、一元一次方程

只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数 不是零的整式方程是一元一次方程。

3、一元一次方程的标准形式:ax+b=0(x 是未知数,a、b 是已知数,且 a≠0)。

4、等式的性质

等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

5、角的比较与运算

如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。

如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。

Ⅲ 人教版【初中数学】知识点总结-全面整理(超全)

《初中数学|升级版人教版初中数学七年级下册》网络网盘资源免费下载

链接:https://pan..com/s/1Aqd2mzuHw21jbIBsyK9EUQ

提取码:65qa

初中数学|升级版人教版初中数学七年级下册|升级版人教版初中数学七年级上册|升级版人教版初中数学九年级下册|升级版人教版初中数学九年级上册|升级版人教版初中数学八年级下册|升级版人教版初中数学八年级上册|人教版初中数学7年级上册|数学初中2上15.4因式分解(一).rmvb|数学初中2上15.4因式分解(二).rmvb|数学初中2上15.3同底数幂的除法.rmvb|数学初中2上15.2乘法公式.rmvb|数学初中2上15.1整式的乘法(一).rmvb|数学初中2上15.1整式的乘法(二).rmvb|数学初中2上14.4选择方案(一).rmvb

Ⅳ 初一上册数学复习资料

《初中数学华师大版七年级上册》网络网盘免费资源下载

链接: https://pan..com/s/1bqeovtCC8e9k6ShcnIq9oA

?pwd=y83e 提取码: y83e

Ⅳ 初一数学的知识点

不同版本学的内容不同,你学的什么版本?至于学的哪些知识点,你看一下目录就明白了。

Ⅵ 七年级数学知识点有哪些

七年级数学知识点如下:

1、数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

2、具有原点,正方向,单位长度的直线叫数轴。

3、加法交换律:两个数相加,交换加数的位置,和不变。

4、数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号。

5、a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。

Ⅶ 初一数学到底有哪些重要重要的知识点

代数初步知识
1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“• ” 乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“• ”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a× 应写成 a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成 的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;
(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;
(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .
有理数
1.有理数:
(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
(2)有理数的分类: ① ②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数 0和正整数;a>0  a是正数;a<0  a是负数;
a≥0  a是正数或0  a是非负数;a≤ 0  a是负数或0  a是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0  a+b=0  a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;
(3) ; ;
(4) |a|是重要的非负数,即|a|≥0;注意:|a|•|b|=|a•b|, .
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;倒数是本身的数是±1;若ab=1 a、b互为倒数;若ab=-1 a、b互为负倒数.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10 有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .

Ⅷ 初一的所有知识点数学

1.数轴

(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

数轴的三要素:原点,单位长度,正方向.

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.

2.相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.

(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.

3.绝对值

(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.

①互为相反数的两个数绝对值相等;

②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

③有理数的绝对值都是非负数.

(2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:

①当a是正有理数时,a的绝对值是它本身a;

②当a是负有理数时,a的绝对值是它的相反数﹣a;

③当a是零时,a的绝对值是零.

即|a|={a(a>0)0(a=0)﹣a(a<0)

4.有理数大小比较

(1)有理数的大小比较

比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.

(2)有理数大小比较的法则:

①正数都大于0;

②负数都小于0;

③正数大于一切负数;

④两个负数,绝对值大的其值反而小.

Ⅸ 初一数学知识点有哪些

初一数学知识点如下:

1、0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数。

2、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

3、在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成 的形式。

4、有理数中1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

5、数轴的作用:所有的有理数都可以用数轴上的点来表达。