① 求高中数学公式总结图片版
② 初二上学期数学所有知识点归纳
初二数学知识点
第一章 一次函数
1 函数的定义,函数的定义域、值域、表达式,函数的图像
2 一次函数和正比例函数,包括他们的表达式、增减性、图像
3 从函数的观点看方程、方程组和不等式
第二章 数据的描述
1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点
条形图特点:
(1)能够显示出每组中的具体数据;
(2)易于比较数据间的差别
扇形图的特点:
(1)用扇形的面积来表示部分在总体中所占的百分比;
(2)易于显示每组数据相对与总数的大小
折线图的特点;
易于显示数据的变化趋势
直方图的特点:
(1)能够显示各组频数分布的情况;
(2)易于显示各组之间频数的差别
2 会用各种统计图表示出一些实际的问题
第三章 全等三角形
1 全等三角形的性质:
全等三角形的对应边、对应角相等
2 全等三角形的判定
边边边、边角边、角边角、角角边、直角三角形的HL定理
3 角平分线的性质
角平分线上的点到角的两边的距离相等;
到角的两边距离相等的点在角的平分线上。
第四章 轴对称
1 轴对称图形和关于直线对称的两个图形
2 轴对称的性质
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;
线段垂直平分线上的点到线段两个端点的距离相等;
到线段两个端点距离相等的点在这条线段的垂直平分线上
3 用坐标表示轴对称
点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).
4 等腰三角形
等腰三角形的两个底角相等;(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)
一个三角形的两个相等的角所对的边也相等。(等角对等边)
5 等边三角形的性质和判定
等边三角形的三个内角都相等,都等于60度;
三个角都相等的三角形是等边三角形;
有一个角是60度的等腰三角形是等边三角形;
推论:
直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。
在三角形中,大角对大边,大边对大角。
第五章 整式
1 整式定义、同类项及其合并
2 整式的加减
3 整式的乘法
(1)同底数幂的乘法:
(2)幂的乘方
(3)积的乘方
(4)整式的乘法
4 乘法公式
(1)平方差公式
(2)完全平方公式
5 整式的除法
(1)同底数幂的除法
(2)整式的除法
6 因式分解
(1)提共因式法
(2)公式法
(3)十字相乘法
初二下册知识点
第一章 分式
1 分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2 分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2) 分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减
3 整数指数幂的加减乘除法
4 分式方程及其解法
第二章 反比例函数
1 反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2 反比例函数在实际问题中的应用
第三章 勾股定理
1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章 四边形
1 平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2 特殊的平行四边形:矩形、菱形、正方形
(1) 矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定: 有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论: 直角三角形斜边的中线等于斜边的一半。
(2) 菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形。
(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形。
第五章 数据的分析
加权平均数、中位数、众数、极差、方差
③ 数学青岛版第一单元思维导图
高中数学的成绩,不刷题是不行的,有人一天刷一张试卷,有人两天完成一份,这些学生刷题不止可是成绩没有提高,症结在于不会在总结题目中整理自己的思考过程!
因为对于任何一道题,其实答案并不重要,思路才是关键——换句话说,你想出来的答案并不是关键,关键问题在于:你想不想得出来——因为你永远不可能在未来的考场上碰到一摸一样的题目,但却很有可能需要重复使用与之类似的思考方式。
然而,“思路”是一种非常抽象的概念,而“答案”则是具体的内容。很多同学做错题集,也只是把正确答案誊写上去,因为想要用错题集分析“思路”是一件困难的事。
二项式定理
概率与统计
算法
④ 初中数学知识点总结
很多的学生到了初中之后,发现自己的分数会有一定的下降,这可能是由于上初中之后数学科目的难度加大,所以分数会有一定的降低,那么初中数学应该怎样学?应该使用什么方式哪?
知识点
当老师在讲完内容之后会讲一些课外的内容,一般是定理、概念等等,会让你对这些知识更加的了解,所以如果对这类题目有问题的同学可以多看一些课外的题目,当然想要提升分数是离不开练习题的,想要多好就需要多做一些习题,但是不可以过多,需要边做边思考才可以,这样所学的知识就会运用出来.
以上就是初中数学应该怎样学习的内容,如果在这个阶段对自己分数不满意的同学可以借鉴一下以上的内容,或许会对你有一定的帮助,将自身的分数提升.
⑤ 数学思维导图怎么画
数学思维导图的构建模式是先确定中心主题,引出子主题,再将子主题划分为不同层次。具体操作步骤如下。
1、使用最简单的语言确定要绘制的数学主题,以“角度测量”为例,如下图所示。
注意事项:
上述思维导图里,由角引出了射线的定义角和射线之间,画一条关系线,方便我们把知识点串联起来即可。
⑥ 初中数学初一初二知识点
函数的要素:自变量,因变量,常数k(系数,斜率),自变量的值在平面直角坐标系的横轴上(X轴)表示,因变量的值在纵坐标轴上(Y轴)表示。点的坐标为:(x,y)
一。正比例函数
1、.图像:解析式:y=kx
(k≠0)经过原点的一条直线。是特殊的一次函数。
2、性质:k>0时,图像经过
一、三象限。y随x的增大而曾大,y随x的减小而减小。
k<0时,图像经过
二、四象限,y随x的增大而减小,y随x的减小而增大。
3、画法:任取一个点,再过原点作一条直线就可以了。
二、一次函数
1、图像:解析式:Y=kx+b(k≠0),是正比例函数y=kx
(k≠0),上下平移b个单位得来的
与坐标轴有两个交点。A(0,y),B(x,0),找到
x,y
的值后过这两点作一条直线就
好了。
2、和正比例函数的性质相同。k的绝对值越大,图像越来越接近y轴,反之接近x轴。k=1时,图
像是一三象限的角平分线,k=-1时,图像是二四象限的角平分线。
考点:经常用两个一次函数的图像来说明两种电话费的优惠情况。(有座机费,一次函数;无座机费,正比例函数)两个函数的图像有一个交点,其横坐标表示通话时间,纵坐标表示收费情况
交点的横坐标值表示通话时间,纵坐标值表示两种收费一样。交点靠右,随着通话时间的增加,一次函数图像低,表示有座机费的优惠。交点靠左,表示通话时间低于这个范围,无座机费的优惠。举一反三,其他类似题目不一一说明。
三、反比例函数
1、图像:解析式:y=k/x(k≠0)图像是双曲线。
2、性质:k>0时,图像在一三象限,y随x的增大而减小,y随x的减小而增大。
k<0时,图像在二四象限,y随x的增大而增大,y随X的减小而减小。
图像永远不与坐标轴相交。图像两个分支关于原点对称。
考点:与一次函数合并起来在一个坐标系研究。一般是求交点坐标。分析;相交时候,两个方程的x和y是分别相等的,只要让
k1x=k2/x
相等就可以求出x的值,有两个,分别代入原解析式就求出y,,从而点的坐标就知道了。
较复杂的题目是一次函数与反比例函数相交,形成了三角形,求三角形面积。或者告诉你面积了,让你确定
函数的解析式。
总之,求解析式就是分析是什么样的函数,从而设出对应的解析式,代入求值就行了,我们称为【待定系数法】。详细的解题的思路和方法技巧需要结合一些题目来说明。你发过来,追问,我可以给你画多个图。
⑦ 七年级数学上册知识点
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等
第一章
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组
不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集。求不等式组的解集的过程叫做解不等式组。
解不解不等式的诀窍
大于大于取大的(大大大);
例如:X>-1
X>2
不等式组的解集是X>2
小于小于取小的(小小小);
例如:X<-4
X<-6
不等式组的解集是X<-6
大于小于交叉取中间;
无公共部分分开无解了;
解方程型:
1.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.5元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?
解:
运输成本:400*1。5=600元
收购成本:1。2*1000=1200元
设销价是X
1000*90%*X-[600+1200]=[600+1200]*25%
X=2.5
即销价是2.5元/千克
①某球迷协会组织36名球拟租乘汽车赴比赛场地,为主队加油助威。可租用的汽车有两种:一种每辆可乘8人,另一种每辆可乘4人,要求租用的车子不留空位,也不超载。若8个座位的车子的租金是300元/天,4个座位的车子的租金是200元/天,请你设计出费用最少的租车方案,并说明理由。
问题补充:
甲步行,乙骑自行车,两人同时从相距45km的A、B两地出发相向而行,2.5h后两人相遇,已知乙骑自行车的速度是甲步行速度的2倍,求甲步行的速度。(列方程解)
1.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.5元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?
解:
运输成本:400*1。5=600元
收购成本:1。2*1000=1200元
设销价是X
1000*90%*X-[600+1200]=[600+1200]*25%
X=2.5
即销价是2.5元/千克
2.甲、乙两人各坐一游艇在湖中划行,甲每摇桨10次时,乙只能摇桨8次;而乙摇桨70次所走的路程等于甲摇桨90次所走的路程。开始时,甲先摇桨4次,乙接着摇桨。问乙摇几次桨才能追上甲?
解:
设甲每次前进的路程是1,乙要x次才能追上.乙x次的时候,甲划了(10/8)x=(5/4)x次,甲90次就是90,这需要乙70次,则乙每次前进90/70=9/7,甲先4次,就是4.
4+1*(5/4)x=(9/7)*x
[(9/7)-(5/4)]x=4
(1/28)x=4
x=112(次)
⑧ 初2数学下册书所有知识点
初二数学下知识点总结
平移与旋转
旋转
旋转的定义:
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
旋转的性质:
旋转后得到的图形与原图形之间有:对应点到旋转中心的距离相等,旋转角相等。
中心对称
中心对称的定义:
如果一个图形绕某一点旋转180度后能与另一个图形重合,那么这两个图形叫做中心对称。
中心对称图形的定义:
如果一个图形绕一点旋转180度后能与自身重合,这个图形叫做中心对称图形。
中心对称的性质:
在中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。
轴对称
轴对称的定义:
如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对
称图形,这条直线叫做对称轴。
轴对称图形的性质:
①角的平分线上的点到这个角的两边的距离相等。
②线段垂直平分线上的点到这条线段两个端点的距离相等。
③等腰三角形的“三线合一”。
3.轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。
图形变换
图形变换的定义:图形的平移、旋转、和轴对称统称为图形变换。
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。
特别地,当一次函数中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。
2、一次函数的图像
所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。(如下图)
4.
正比例函数的性质
一般地,正比例函数有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质
一般地,一次函数有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。
⑨ 数学函数思维导图怎么画
数学思维导图的构建模式,都是先确定一个中心主题,引出子主题,对子主题再分层次即可。具体操作步骤如下。
1、用最简洁的语言确定要画的数学主题。以“角的度量”为例。如下图所示。
注意事项:
上述思维导图里,由角引出了射线的定义角和射线之间,画一条关系线,方便我们把知识点串联起来即可。
⑩ 初中数学知识导图
网络图就没有了,知识点可以不?好多的知识点…还是要慢慢的一点一点的啃啊,当初我就是这样啃过来的~~
初中数学概念及定义总结:三角形三条边的关系 定理:三角形两边的和大于第三边 推论:三角形两边的差小于第三边 三角形内角和 三角形内角和定理 三角形三个内角的和等于180° 推论1 直角三角形的两个锐角互余 推论2 三角形的一个外角等于和它不相邻的两个内角和 推论3 三角形的一个外角大雨任何一个和它不相邻的内角 角的平分线 性质定理 在角的平分线上的点到这个角的两边的距离相等 判定定理 到一个角的两边的距离相等的点,在这个角的平分线上 等腰三角形的性质 等腰三角形的性质定理 等腰三角形的两底角相等 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 推论2 等边三角形的各角都相等,并且每一个角等于60° 等腰三角形的判定 判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等 推论1 三个角都相等的三角形是等边三角形 推论2 有一个角等于60°的等腰三角形是等边三角形 推论3 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 线段的垂直平分线 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 轴对称和轴对称图形 定理1 关于某条之间对称的两个图形是全等形 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 定理3 两个图形关于某直线对称,若它们的对应线段或延长线相交,那么交点在对称轴上 逆定理 若两个图形的对应点连线被同一条直线垂直平分,那这两个图形关于这条直线对称 勾股定理 勾股定理 直角三角形两直角边a、b的平方和,等于斜边c的平方,即 a2 + b2 = c2 勾股定理的逆定理 勾股定理的逆定理 如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形 四边形 定理 任意四边形的内角和等于360° 多边形内角和 定理 多边形内角和定理n边形的内角的和等于(n - 2)·180° 推论 任意多边形的外角和等于360° 平行四边形及其性质 性质定理1 平行四边形的对角相等 性质定理2 平行四边形的对边相等 推论 夹在两条平行线间的平行线段相等 性质定理3 平行四边形的对角线互相平分 平行四边形的判定 判定定理1 两组对边分别平行的四边形是平行四边形 判定定理2 两组对角分别相等的四边形是平行四边形 判定定理3 两组对边分别相等的四边形是平行四边形 判定定理4 对角线互相平分的四边形是平行四边形 判定定理5 一组对边平行且相等的四边形是平行四边形 矩形 性质定理1 矩形的四个角都是直角 性质定理2 矩形的对角线相等 推论 直角三角形斜边上的中线等于斜边的一半 判定定理1 有三个角是直角的四边形是矩形 判定定理2 对角线相等的平行四边形是矩形 菱形 性质定理1 菱形的四条边都相等 性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 判定定理1 四边都相等的四边形是菱形 判定定理2 对角线互相垂直的平行四边形是菱形 正方形 性质定理1 正方形的四个角都是直角,四条边都相等 性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 中心对称和中心对称图形 定理1 关于中心对称的两个图形是全等形 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 梯形 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 三角形、梯形中位线 三角形中位线定理 三角形的中位线平行与第三边,并且等于它的一半 梯形中位线定理 梯形的中位线平行与两底,并且等于两底和的一半 比例线段 1、 比例的基本性质 如果a∶b=c∶d,那么ad=bc 2、 合比性质 3、 等比性质 平行线分线段成比例定理 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 推论 平行与三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行与三角形的第三边 垂直于弦的直径 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧 推论1 (1) 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 (2) 弦的垂直平分线过圆心,并且平分弦所对的两条弧 (3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 圆的两条平分弦所夹的弧相等 圆心角、弧、弦、弦心距之间的关系 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等 圆周角 定理 一条弧所对的圆周角等于它所对的圆心角的一半 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直角 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 圆的内接四边形 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 切线的判定和性质 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 切线的性质定理 圆的切线垂直于经过切点半径 推论1 经过圆心且垂直于切线的直径必经过切点 推论2 经过切点且垂直于切线的直线必经过圆心 切线长定理 定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 弦切角 弦切角定理 弦切角等于它所夹的弧对的圆周角 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 和圆有关的比例线段 相交弦定理:圆内的两条相交弦,被焦点分成的两条线段长的积相等 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项 ……
太多了,不过网络很强大,之前有人问过类似的问题,这个可以看看http://..com/question/147977826.html?fr=qrl&cid=197&index=2&fr2=query