❶ 小学五年级下数学知识点
对称,旋转,平移,因数,倍数,公因数,公倍数,通分,约分,分数的加减混合运算,长方体和正方体的体积,不规则物的体积,容积,找次品,打电话,众数,复式折线统计图等等。
❷ 五年级下册数学总结(人教版)
1、数的认识(整数和小数、数的整除、分数百分数)
知识要点包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”“小数、分数、百分数的互化”“约分和通分”等知识点。 重点确定在数的意义概念的理解,数的读写,数的整除。
本部分重点加强数学基本概念和基本性质的理解和掌握。具体通过一系列的练习,如填空题、选择题、判断题为主,适当穿插进行整数和小数的简单计算、约分和通分练习。复习本部分知识教师应该根据学生的实际学习水平灵活处理,对于班级基础较差的学生可适当放慢,万事开头难,本部分知识必须做到教一点使学生会一点,切忌贪多图快。复习题可参考以前的专项复习题或专项复习试卷。
2、四则运算(四则运算的意义与法则、运算定律与简便计算、四则混合运算、简易方程)。
这节重点四则运算和简便运算上。 全面概括四则运算和计算方法,提高计算水平和计算能力,包括“四则运算的意义和法则”、“四则混合运算”。 利用运算定律,掌握简便运算,提高计算效率,包括“运算定律和简便运算”。 结合教材按照先复习(整数、小数、分数)四则运算意义和运算法则,要求教师结合教材必须搞好学生相关的口算训练和基本的四则运算练习,然后再复习(整数、小数、分数)的四则混合运算,教师要加强四则混合运算中运算顺序的教学,在此基础上教师要精心设计练习,提高学生综合计算能力
3、量的计量
本节重点放在名数的改写和实际观念上。
(1)、整理量的计量知识结构,包括“长度、面积、体积单位”、“重量与时间单位”。
(2)、巩固计量单位,强化实际观念,包括“名数的改写”。
(3)、综合训练与应用,练习题可刻印或参考试卷。
4、几何初步知识(线和角、平面图形、立体图形)
本节重点放在对特征的辨析和对公式的应用上。
(1)、强化概念理解和系统化,包括“平面图形的特征”、“立体图形的特征”。
(2)、准确把握图形特征,加强对比分析,揭示知识间的联系与区别,包括“平面图形的周长与面积”、“立体图形的表面积和体积”。
(3)、加强对公式的应用,提高掌握计算方法。能让学生对周长、面积、体积进行的正确计算。
(4)、整体感知、实际应用。
练习题可刻印或参考试卷。
5、比和比例(比的意义和性质、比例的意义和性质、正比例和反比例)
本部分要求学生掌握比和比例意义和性质的同时,必须做到使学生正确辨析概念,加深理解,包括“比和比例”、“正比例和反比例”,会判断简单的正、反比例。重点要求学生掌握求比值、化简比,按比例分配,应用比例尺计算,解比例。在练习中很抓解题训练,提高解方程和解比例的能力,包括“简易方程”、“解比例”。
练习题可刻印或参考试卷。
6、简单的统计
本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。
(1)、求平均数的方法。
(2)、加深统计图表的特点和作用的认识,包括“统计表”、“统计图”。
(3)、进一步对图表分析和回答问题,包括填图和根据图表回答问题。(本部分是复习的重点)
练习题可参考教材或试卷。
7、应用题解(整数和小数应用题、分数和百分数应用题、列方程解应用题、比和比例应用题)
这部分重点应放在应用题的分析和解题技能的发展上,难点内容是分数应用题。
(1)、简单应用题的分析与整理。 (一步计算)
(2)、复合应用题的分析与整理。 (两步以上)
(3)、列方程解应用题的分析与整理。
(4)、分数应用题的分析与整理。(重点)
(5)、用比例知识解答应用题的分析与整理。
(6)、应用题的综合训练 。
❸ 五年级下册数学必背知识点有哪些
五年级下册数学必背知识点如下:
1、一个数的倍数的特征:一个数的倍数的个数是无限的,其中最少的倍数是它本身,没有最大的倍数;如果几个数都是一个数的倍数,那么这几个数的合也是这个数的倍数。
2、在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
3、一般的如果a是整数,偶数可以用2a表示。奇数可以用2a+1表示。
4、自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫奇数。最小的偶数是0,最小的奇数是1。
5、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);1不是质数,也不是合数。
❹ 人教版五年级下册数学复习资料
小学五年级下册数学期末知识点复习资料
一、简便计算
加法结合律:(a+b)+c=a+(b+c) 减法的性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
例:
二、计算部分
1、 注意计算结果约分,尤其是分子和分母是3的倍数的分数。2、快速找到几个分数的公分母。例:
三、解方程
等式的性质:a±c=b±c a÷c=b÷c a×c=b×c c≠0
四、长方体和正方体的计算
h
b
a a
长方体的棱长和=4a+4b+4h=4(a+b+h) 正方体的棱长和=12a (带长度单位)
长方体的表面积= 2(ab+bh+ah) 正方体的表面积= (带面积单位)
长方体的体积= abh 正方体的体积= (带体积单位)五、知识点
1、几个最小:最小的自然数是0,最小的偶数是0,最小的奇数是1,最小的质数是2,最小的合数是4。
2、一个数的最大因数是它本身,最小因数是1;一个数的最小倍数是它身,没有最大倍数。
一个数的最大因数等于它的最小倍数。
3、图形的变换有:平移、对称、旋转、放大与缩小。
4、旋转的三要素:方向、角度、中心点(定点)。
5、长方形的对称轴有2条,正方形的对称轴有4条,圆形有无数条对称轴,半圆只有1条对称轴,扇形只有1条对称轴,等腰三角形只有1条对称轴,等边三角形有3条对称轴,
等腰梯形只有1条对称轴,菱形有2条对称轴。一般的平行四边形不是轴对称图形。
6、长方体和正方体都有6个面,8个顶点,12条棱。长方体每个面一般都是长方形,特殊情况有相对的两个面是正方形,其余四个面都是面积相等的长方形。长方体相对的棱长度相等,相对的面的面积相等,长方体有4条长,4条宽,4条高。正方体也叫立方体,是长、宽、高都相等的特殊的长方体,正方体每个面都是正方形且面积都相等。
7、体积:物体所占空间的大小。常用的体积单位有:
容积:容器、桶、仓库等所能容纳物体的体积。常用的容积单位有:l ml
体积与容积间的单位换算:
8、分数与除法的关系:分数的分子相当于除法里的被除数,分母相当于除法里的除数,分数线相当于除法里的除号,分数的大小(分数的值)相当于除法里的商。区别:分数是一种数,除法是一种运算。它的关系用字母表示为:
9、分子比分母小的分数叫真分数,真分数小于1;分子比分母大(或相等)的分数叫假分数,假分数大于或等于1。
10、分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
11、最简分数:分子和分母只有公因数1的分数叫最简分数。
12、同分数加减法的计算法则:分母不变,把分子相加减。
13、异分母加减法的计算法则:先通分,再按照同分母加减法的计算法则进行计算。
14、奇数:不是2的倍数的数。偶数:是2的倍数的数。
15、质数:一个数除了1和它本身两个约数,没有别的约数的数。合数:一个数除了1和它本身以外,还有别的约数的数。1不是质数,也不是合数。
16、2的倍数的特点:个位上是0、2、4、6、8的数。5的倍数的特点:个位上是0或5的数。3的倍数的特点:一个数各位上的数字之和是3的倍数的数。
17、互质数:只有公因数1的两个数。如:2和5,9和8,7和15,4和9。
六、解决问题
1、求一个量是另一个量的几分之几的?
方法:用一个量除以另一个量。注意:结果约成最简分数。
例:把5克糖放入20克水中,糖的重量占水的几分之几?糖的重量占糖水的几分之几?
解答思路:第一问题是求糖的重量是水的几分之几应该用糖的重量去除以水的重量。而第二问题是求重量是糖水的重量的几分之几应该用糖的重量去除以糖水的重量。根据分析列式为:
2、分数加减法应用题
例1:水果店里原有水果 吨,卖出 吨后又运进 吨。水果店现在有水果多少吨?
解答思路:由于每个分数都带上了单位,所以每个分数表示具体的数量。应该用我们以前学的整数应用题的解答方法进行解答。
例2:五四班有45人,有 的同学参加了语文兴趣小组,有 的同学参加了数学兴趣小组,其余的参加了音、体、美兴趣小组。参加音、体、美兴趣小组的同学占全班同学的几分之几?
解答思路:本题的每个分数没有带单位,它表示量与量之间的关系。因此本题应把全班45人看作单位“1”进行思考。
3、长方体正方体表面积、体积的应用
方法:根据题意学会画图进行分析思考,抓住重点词句,利用好其计算公式。
例1:给一个无盖长方体水缸抹水泥,从里面量得长8分米,宽4分米,深6分米;抹水泥的面积是多少?
解答思路:这是关于长方体的表面积的应用,从无盖和抹水泥的面积中可以看出。在计算时,由于无盖只算五个面。
8×4+8×6×2+4×6×2=176(平方分米)
4、最大公因数和最小公倍数的应用
例1:五一班有48人,五二班有56人。如果把这两个班分成人数相等的小组,每组最多几人?一共可分几个小组?
解答思路:根据题意,要想两个班分成的人数相等,说明这个人数既是48的因数,也是56的因数,由于是求每组人数最多几人,所以是求它们的最大公因数。
48的因数有:1,2,3,4,6,8,12,16,24,48.
56的因数有:1,2,4,7,8,14,28,56。
48和56的最大公因数是8。所以每组人数最多是8人。
48÷8+56÷8=13(组)
例2:一个班有40多人,如果4个人一组或6个人一组都能刚好分完,这个班有多少人?
解答思路:根据题意,4人一组或多或6人一组都能刚好分完,所这个班的人数既是4的倍数也是6的倍数。所以是4和6的公倍数,并且是在40多的一个公倍数。
4的倍数:4,8,12,16,20,24,28,32,36,40,44,48。
6的倍数:6,12,18,24,30,36,42,48。
4 和6的公倍数有:12,24,36,48。
所以这个班有48人。
5、找次品
有一批零件共15个,其中有一个比其它零件轻一些,你能用天平找出这个次品来吗?至少要几次一定能找到这个次品?
解答:15个零件(5,5,5)先天平各放5个,如果不平衡,将其中轻的5个零件再分成(2,2,1),又将天平各放2个,如果不平衡,最后将轻的2个零件再分面(1,1)。这样至少三次就可以找出这个较轻的零件了。
每个大格是30度,每个小格是6度。
九、最大公因数和最小公倍数
方法:列举法 短除法 集合法 口算法
18和12(6)[24] 30和60(30)[60] 7和5(1)[35] 8、6和12(2)[24]
如果两个数是倍数关系,则它们的最大公因数是较小的数,最小公倍数是较大的数。
如果两个数是互质数,则它们的最大公因数是1,最小公倍数是它们的乘积。
十、通分与约分
依据:分数的基本性质 用字母表示:
例1:将下面的分数约成最简分数
例2:将下面的各组分数进行通分
十一、分数与小数的互化
小数化分数的方法:先将小数改写成分母是10、100、1000的分数,能约分的再约分。
例
分数化成小数的方法:一般根据分数与除法的关系,用分子除以分母,除不尽的保留一定的小数位数。
例
常用的分数与小数间的互化。
十二、分解质因数
方法:将合数写成几个质数相乘的形式。
28、30、24、32、77、100
28=2×2×7
十三、分数的意义
把单位“1”平均分成若干份,表示其中的一份或几份的数。
❺ 五年级下册数学知识点
一根长方形把它锯成两段把它锯成两段后,表面积后,表面积的木料长米,把它锯成两段后,表面积增加了2.5平方分米。这根木料的体积是多少?
❻ 五年级下册数学单元总结(注意、人教版)
五年级知识点归纳总结
一单元 图形变换
归纳重点知识
轴对称
轴对称的意义:把一个图形沿着某一条直线对折,如果它能够与另两个图形完全重合,那么说这两个图形成轴对称。这条直线就是这两个图形的对称轴。两个图形重合时互相重合的点叫做对应点;互相重合的线段叫做对应线段;互相重合的角叫做对应角。
轴对称的性质:对应点到对称轴的距离相等。
轴对称的特征:沿对称轴对折,对应点重合,对应线段重合,对应角重合。
选装
选装的意义:物体绕着某一点或轴运动,这种运动现象叫做选装。
图形旋转的方向:钟表指针的运动方向是顺时针方向;与钟表上指针的运动方向相反的方向是逆时针方向。
图形旋转的性质:图形绕着某一点旋转一定的度数,图形中的对应点、对应线段都旋转相应的度数,对应点到旋转点的距离相等,对应角相等。
图形旋转的特征:图形旋转后,形状、大小都没有发生变化,知识位置变了。
欣赏设计
设计图案的基本方法:利用平移、旋转和对称都可以设计简单而美丽的图案。
运用平移设计图案的方法:
选好基本图案。
确定平移方向。
确定平移距离。
画出平移后的图案。
运用旋转设计图案的方法:
选好基本图案。
确定旋转点。
确定旋转角度。
依次画出每次旋转后的图形。
运用对称设计图案的方法:
选好基本图案。
确定对称轴。
画出基本图案的对称图形。
二单元 因数和倍数
归纳重点知识
因数和倍数。
因数、倍数的意义:如果a×b=c(a、b、c都是不畏为0的整数),那么a、b就是c的因数,c就是a、b的倍数。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是其本身。
一个数的倍数是无限的,其中最小的倍数是它本身,没有最大的倍数。
因数和倍数的关系:因数和倍数是相互依存的概念,二者不能单独存在。
找一个是的因数的方法:
列乘法算式找。
列除法算式找。
找一个数的倍数的方法:
列乘法算式找一个数的倍数,就是用这个数依次与非零自然数相乘,所得的积就是这个数的倍数;
列除法算式找。
表示一个数的因数和倍数的方法:A、列举法; B、集合法。
2、3、5的倍数的特征
(1)2的倍数是特征:个位上是1,2,4,6,8的数都是2的倍数。
(2)奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。
(3)奇数、偶数是运算性质:
奇数±奇数=偶数 偶数±偶数=偶数 奇数±偶数=奇数(大减小)
奇数×奇数=奇数 奇数×偶数=偶数 偶数×偶数=偶数
(4)5的倍数的特征:个位上是0或者5的数都是5的倍数。
(5)3的倍数的特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
3、质数和合数。
(1)质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质素和(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
(2)分解质因数:把一个合数用几个质数相乘的形式表现出来,就是分解质因数。
(3)质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。
(4)分解质因数的方法:A、枝状图式分解法; B、短除法。
三单元 长方体和正方体
归纳重点知识
长方体或正方体的特征。
长方体的特征:有6个面(6个面都是长方形或者4个面是长方形,2个面是正方形),相对的面完全相同;有12条棱,相对的棱长度相等:有8个顶点。
正方形的特征:正方形的6个面是完全相同的正方形;12条棱的长度相等;有8个顶点。
长方体上、宽、高的意义:相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。一个长方体有4条长、4条宽、和4条高。
长方体或正方体的表面积。
表面积的意义:长方体或者正方体的6个面的总面积,叫做它的表面积。
长方体表面积的计算方法。
长方体表面积=(长×宽+上×高+宽×高)×2,用字母表示为S=2(ab+ah+bh);
长方体的表面积=长×宽×2+长×高×2+宽×高×2;用字母表示为:S=2ab+2ah+2bh.
正方体表面积的计算方法:正方体表面积=棱长×棱长×6,用字母表示为S=6a2
长方体和正方体的体积
体积的意义:物体所占的大小叫做物体的体积。
体积单位:立方米,立方分米,立方厘米;用字母表示为m3,dm3,cm3。
体积单位间的进率:1m3=1000dm3 1dm3=1000cm3
长方体和正方体体积计算公式。
长方体的体积=长×宽×高,用字母表示为S=abh
正方体的体积=棱长×棱长×棱长,用字母表示为S=a3。(其中a3读作a的立方,表示3个a相乘。)
长方体(或正方体)的体积=底面积*高,用字母表示为V=Sh
容积的意义:容器所能容纳物体的体积,通常叫做它们的容积。
容积的计算方法:长方体、正方体等规则容器容积的计算方法和体积的计算方法相同,但是要从容器里面测量长、宽、高。
容积的单位和容积单位间的进率:1L=1000ml
容积单位和体积单位之间的换算:1L=1dm3 1ml=1cm3
形状不规则物体体积的测量和计算方法:一般把这些物体的体积转化为可测量计算的水的体积。
❼ 五年级下册数学期末考试的要点有哪些呢该如何复习备考
主要的考点包括图形的变换,长方体和正方体,体积之间的单位换算。希望考出一个好成绩,那么在考试的时候就不要太过紧张,只要平时把各种知识点都掌握牢靠了,那么在考试中基本上可以达到知己知彼百战百胜。只要平时把基础打好,那么在做题的时候再仔细一些,基本上就可以考出一个不错的成绩。
面对考试不要慌,心平气和才是制胜的法宝
有很多学生在考试之前都已经做了充足的功课,也做了充足的准备,本来把所有的知识点都已经掌握牢靠了,可是在考试的时候却突然有一种比较紧张的状态,这也导致在发挥的时候发挥不出来自己的实际水平。其实没有必要这么紧张,把任何考试都看作是异常检验自己的测试,考的好了,下次继续努力,考得不好也不要灰心,及时查缺补漏提升自己的弱点。
❽ 五年级下册数学人教版的知识概括
小学五年级数学上册期末复习知识点归纳
第一单元小数乘法
1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算.
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算.
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少.
如:1.5×0.8就是求1.5的十分之八是多少.
1.5×1.8就是求1.5的1.8倍是多少.
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位.
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小.
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分.保留一位小数,表示计算到角.
6、(P11)小数四则运算顺序跟整数是一样的.
7、运算定律和性质:
加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算.
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除.,商的小数点要和被除数的小数点对齐.整数部分不够除,商0,点上小数点.如果有余数,要添0再除.
10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算.
注意:如果被除数的位数不够,在被除数的末尾用0补足.
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数.
12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变.
②除数不变,被除数扩大,商随着扩大.③被除数不变,除数缩小,商扩大.
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数. 循环节:一个循环小数的小数部分,依次不断重复出现的数字.如6.3232……的循环节是32.
14、小数部分的位数是有限的小数,叫做有限小数.小数部分的位数是无限的小数,叫做无限小数.
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面.
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写.
加号、减号除号以及数与数之间的乘号不能省略.
17、a×a可以写作a•a或a ,a 读作a的平方. 2a表示a+a
18、方程:含有未知数的等式称为方程.
使方程左右两边相等的未知数的值,叫做方程的解.
求方程的解的过程叫做解方程.
19、解方程原理:天平平衡.
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立.
20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是等式.
22、方程的检验过程:方程左边=…… 23、方程的解是一个数;
=…… 解方程式一个计算过程.
=方程右边
所以,X=…是方程的解.
第五单元多边形的面积
23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)×2
面积=长×宽 字母公式:S=ab
正方形:周长=边长×4 字母公式:C=4a
面积=边长×边长 字母公式:S=a
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】 字母公式: S=ah÷2
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
——【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】
24、平行四边形面积公式推导:剪拼、平移 25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高. 因为平行四边形面积=底×高,所以三角形面积=底×高÷2
26、梯形面积公式推导:旋转 27、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形, 知道就行.
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍.
29、长方形框架拉成平行四边形,周长不变,面积变小.
30、组合图形:转化成已学的简单图形,通过加、减进行计算.
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适.
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码.
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区) 0 5 4 0 0 1
前3位表示邮区
前4位表示县(市)
最后2位表示投递局
35、身份证号码:18位
1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台县 出生日期 顺序码 校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女.
第一单元 倍数与因数(我们只在自然数(0除外)范围内研究倍数和因数.)
1、像0、1、2、3、4、5、6……这样的数是自然数.
2、像-3、-2、-1、0、1、2、3……这样的数是整数.3、整数与自然数的关系:整数包括自然数.
4、倍数和因数: 举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的.
5、找倍数:从1倍开始有序的找.
6、一个数倍数的特点: ①一个数的倍数的个数是无限的;
②最小的倍数是它本身;
③没有最大的倍数.
7、找因数:找一个数的因数,一对一对有序的找较好.
8、一个数因数的特点: ①一个数的因数的个数是有限的;
②最小的因数是1;
③最大的因数是它本身.
9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数.
10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数.
按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数
11、5的倍数的特征:个位是0或5的数是5的倍数.
12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数.
13、既是2的倍数又是5的倍数的特征:个位是0的数.
既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数;
②各个数位上的数字的和是3的倍数
既是3的倍数又是5的倍数的特征:①个位是0或5的数;
②各个数位上的数字的和是3的倍数
既是2的倍数又是3的倍数还是5的倍数的特征: ①个位是0的数;
②各个数位上的数字的和是3的倍数
9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数
14、质数:一个数只有1和它本身两个因数,这个数叫质数.最小的质数是2,是唯一的质数中的偶数.
100以内的质数:
15、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数.
1既不是质数也不是合数,最小的合数是4.
16、按一个数的因数个数分,自然数可以分为三类.
第二单元 图形的面积(一)
1、 长方形周长=(长+宽)×2 C = 2 ( a + b )
2、 长方形面积=长×宽 S = a b
3、 正方形周长=边长×4 C = 4 a
4、 正方形面积=边长×边长 S = a 2
5、 平行四边形面积=底×高 S = a h
6、 平行四边形底=面积÷高 a = S ÷ h
7、 平行四边形高=面积÷底 h = S ÷ a
8、 三角形面积=底×高÷2 S = a h ÷ 2
9、 三角形底=面积×2÷高 a = 2 S ÷ h
10、 三角形高=面积×2÷底 h = 2 S ÷ a
11、 梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2
12、 梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )
13、 梯形上底=梯形面积×2÷高-下底 a = 2 S ÷ h - b
14、 梯形下底=梯形面积×2÷高-上底 b = 2 S ÷ h - a
15、 1平方千米=100公顷=1000000平方米
16、 1公顷=10000平方米
17、 1平方米=100平方分米=10000平方厘米
第三单元 分数
1、 分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数.
2、 分母:表示平均分的份数.分子:表示取出的份数.
3、 分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做
分数.表示其中的一份的数,叫做这个分数的分数单位.
4、 真分数:分子小于分母的分数叫做真分数.真分数小于1.
5、 假分数:分子大于或等于分母的分数,叫做假分数.假分数都大于或等于1.
6、 带分数:由整数和真分数组成的分数叫做带分数.
7、 假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变.
8、 整数化成假分数:用指定的分母做分母,用整数与分母的积做分子.
9、 带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变.
10、 质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数.
11 把一个合数用质因数相乘的形式表示出来,叫做分解质因数. 如12=2×2×3
12、几个数公有的因数叫做这几个数的公因数.其中最大的一个,叫做它们的最大公因数.
13 互质:两个数的公因数只有1,这两个数叫做互质.
互质的规律:
(1) 相邻的自然数互质;
(2) 相邻的奇数都是互质数;
(3) 1和任何数互质;
(4) 两个不同的质数互质
(5) 2和任何奇数互质.
质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.
14、 几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数.
15、 求最大公因数,最小公倍数的方法
关系
最大公因数
最小公倍数
倍数关系
16、 分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的
分数是最简分数.
17、 约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过
程叫做约分.计算结果通常用最简分数表示.
18、 通分:把异分母分数分别化成同分母分数,叫通分.通常用最小公倍数
做分数的分母较简便.
19、 如何比较分数的大小:
分母相同时,分子大的分数大;
分子相同时,分母小的分数大;
分子分母都不同时,通分再比.
20、 分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分
数大小不变.
21、分数的意义两种解释:①把单位“1”平均分成4份,表示这样的3份.
②把3平均分成4份,表示这样的1份.
数学与交通:
1 相遇问题:
基本公式:一个人走:速度×时间=路程
两个人同时相对而行:速度和×相遇时间=两人共走路程
甲走的路程+乙走的路程=两人共走的路程
2、旅游费用:
①购票方案:根据人数的多少,价格的不同以及团体优惠人数的多少,合理选
择一种方案购票或几种方案结合起来购票.若只有A、B两种方案是,只要选择
其中一种价格便宜的就行.
②租车问题: 用列表法解决问题.两个原则:多用单价低的,少空座.
3、看图找关系:
①读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么.
②在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行
驶;线往下画,说明减速.
③在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明
原地不动;线往下画,说明又从终点回到某地.
第四单元 分数加减法
1, 异分母分数加减法:先通分,化成同分母分数,然后按照同分母分数加减法法则进行计算.
2, 对计算结果的要求:能约分的要约成最简分数,是假分数要化成带分数.
3, 分数化成小数的方法:用分子除以分母,除不尽的保留两位小数.
4, 小数化成分数的方法:看小数部分有几位,就在1的后面加几个0做分母,去掉小数点做分子,能约分的要约分.
第五单元 图形的面积(二)
1, 求组合图形面积的方法:
(1) 分割法:将图形进行合理分割,形成基本图形,基本图形面积的和就是组合图形的面积.(和法)
(2) 添补法:将图形所缺部分进行添补,组成几个基本图形,基本图形面积-添补图形面积=组合图形面积.
2.不规则图形面积的估算:
(1)数格子的方法.
(2)把不规则图形看成近似的基本图形,估算出面积.
鸡兔同笼:
1, 列表法.
2, 假设法
3, 列方程
点阵中的规律:略
第六单元 可能性大小
1,用1表示事件一定发生,用0表示事件一定不会发生,用分数表示可能性的大小.
2,设计活动方案.
铺地砖:
1, 地面面积除以每块地砖面积=所铺地砖块数
2, 每平方米所需地砖块数乘以地面面积=所铺地砖块数
3, 列方程
4, 注意:转化单位,结果不是整块数用进一法取近似值
❾ 五年级下册数学第三单元的知识点有哪些
在加法或者减法中使用“截位法”时,直接从左边高位开始相加或者相减(同时注意下一位是否需要进位与错位),知道得到选项要求精度的答案为止。在乘法或者除法中使用“截位法”时,为了使所得结果尽可能精确,需要注意截位近似的方向:
一、扩大(或缩小)一个乘数因子,则需缩小(或扩大)另一个乘数因子;
二、扩大(或缩小)被除数,则需扩大(或缩小)除数。如果是求“两个乘积的和或者差(即a*b+/-c*d),应该注意:
三、扩大(或缩小)加号的一侧,则需缩小(或扩大)加号的另一侧;
四、扩大(或缩小)减号的一侧,则需扩大(或缩小)减号的另一侧。
(9)五年级下册数学知识点简短扩展阅读
减法公式
1、被减数-减数=差
2、差+减数=被减数
3、被减数-差=减数
减法相关性质
1、反交换率:减法是反交换的,如果a和b是任意两个数字,那么
(a-b)=-(b-a)
2、反结合律:减法是反结合的,当试图重新定义减法时,那么
a-b-c=a-(b+c)
❿ 数学五年级下册所有知识大全
小学五年级数学下册复习教学知识点归纳总结,期末测试试题习题大全
人教版五年级(下册)数学知识点
一、图形的变换
1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。
二、因数与倍数
1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。
2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。
4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。
5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。
三、长方体和正方体
1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、长方体的棱长总和=(长+宽+高)×4 正方体的棱长总和=棱长×12
4、表面积:长方体或正方体6个面的总面积叫做它的表面积。
5、长方体的表面积=(长×宽+长×高+宽×高)×2 S=(ab+ah+bh)×2
正方体的表面积=棱长×棱长×6 用字母表示:S=
6、表面积单位:平方厘米、平方分米、平方米 相邻单位的进率为100
7、体积:物体所占空间的大小叫做物体的体积。
8、长方体的体积=长×宽×高 用字母表示:V=abh 长=体积÷(宽×高) 宽=体积÷(长×高)
高=体积÷(长×宽)
正方体的体积=棱长×棱长×棱长 用字母表示:V= a×a×a
9、体积单位:立方厘米、立方分米和立方米 相邻单位的进率为1000
10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高 V=Sh
11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;
把低级单位聚成高级单位,用低级单位数除以进率。
12、容积:容器所能容纳物体的体积。
13、容积单位:升和毫升(L和ml) 1L=1000ml 1L=1000立方厘米 1ml=1立方厘米
14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。
四、分数的意义和性质
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0)。
4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。
5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
9、最简分数:分子和分母只有公因数1的分数叫做最简分数。
10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。
12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
13、特殊情况下的最大公因数和最小公倍数:
①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。
14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。
15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。
五、分数的加法和减法
1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。
2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。
3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。
六、打电话
1、逐个法:所需时间最多;
2、分组法:相对节约时间;
3、同时进行法:最节约时间。
1. 因为2×6=12,我们就说2和6是12的因数,12是2的倍数,也是6的倍数。不能单独说谁是倍数或因数
2. 求一个数的因数,用乘法一对一对找,写的时候一般都是从小到大排列的
3. 求一个数的倍数,用一个数去乘1、乘2、乘3、乘4……
4. 一个数的最小因数是1,最大的因数是它本身,一个数的因数的个数是有限的。
5. 一个数的最小的倍数是它本身,没有最大的倍数,一个数的倍数的个数是无限的。
6. 个位上是 0,2,4,6,8的数,都是2的倍数,也是偶数。
7. 自然数中,是2的倍数的数叫做偶数(0也是偶数)。不是2的倍数的数叫奇数。
8. 个位上是0或者5的数,都是5的倍数。
9. 个位是0的数,既是2的倍数,又是5的倍数。
10. 一个数各位上的和是3的倍数,这个数就是3的倍数。
11. 只有1和它本身两个因数的数叫做质数(或素数),除了1和它本身还有别的因数的数叫做合数。1既不是质数,也不是合数。
12. 整数按因数的个数来分类:1,质数,合数。整数按是否是2的倍数来分类:奇数,偶数
13. 将合数分解成几个质数相乘的形式就叫做分解质因数。分解质因数用短除法,把36分解质因数是?
14. 最小的质数是2,最小合数是4,最小奇数是1,最小偶数是0,同时是2,5,3倍数的最小数是30,最小三位数是120
15. 奇数加奇数等于偶数。奇数加偶数等于奇数。偶数加偶数等于偶数。
16. a是c的倍数,b是c的倍数,那么a+b的和是c的倍数,c是a+b和的因数,a-b的差是c的倍数,c是a-b差的因数。
17. 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
18. 轴对称图形特征:对应点到对称轴的距离相等,对应点连线垂直于对称轴
19. 长方体有6个面。每个面都是长方形(可能有两个相对的面是正方形),相对的面大小相等(完全相同)。
20. 长方体有12条棱,分为三组,相对的4条棱长度相等。
21. 长方体有8个顶点。
22. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高
23. 正方体有6个面, 6个面都是正方形 ,6个面完全相等,正方体有12条棱, 12条棱长度都相等,正方体有8个顶点
24. 长方体棱长之和:(长+宽+高)×4 长×4+宽×4+高×4
25. 正方体棱长之和:棱长×12
26. 长方体(正方体)6个面的总面积,叫做它的表面积。
27. 长方体表面积=(长×宽+宽×高+长×高)×2 或长方体表面积=长×宽×2+宽×高×2+长×高×2
28. 正方体表面积=棱长×棱长×6
29. 计量体积要用体积单位,常用的体积单位有立方厘米,立方分米,立方米,可以分别写成cm3 dm3 m3
30. 棱长是1cm的正方体,体积是1 cm3,棱长是1cm的正方体,体积是1 dm3,棱长是1cm的正方体,体积是1 m3
31. 长方体所含体积单位的数量就是长方体的体积。长方体的体积=长×宽×高,v=abh;正方体体积=棱长×棱长×棱长,v=a3 =a×a×a a3表示3个a相乘
32. 相邻两个体积单位间的进率是1000,相邻两个面积单位间的进率是1000,相邻两个长度单位间的进率是10,1立方米=1000立方分米,1立方分米=1立方厘米,1升=1000毫升,1立方米=1000000立方厘米,计量容积一般用体积单位,计量液体的体积,用升和毫升
33. 一个物体、一些物体等都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。
34. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如:表示把单位“1”平均分成7份,表示这样的3份。其中表示一份的数叫做分数单位。
35. 米表示
(1) 把5米看作单位“1”,把单位“1”平均分成8份,表示这样的1份,就是米,算式:5÷8=(米)
(2) 把1米看作单位“1”,把单位“1”平均分成8份,表示这样的5份,就是米,算式:1÷8=(米),5个米就是米
36. 当整数除法得不到整数的商时,可以用分数表示除法的商。在用分数表示整数除法的商时,分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数中的分数线。(除数不能为0)区别:分数是一种数,除法是一种运算
37. 分子比分母小的分数叫真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或等于1。
38. 带分数包括整数部分和分数部分。假分数化成带分数,用分子除以分母所得的商作为带分数的整数部分,余数作为分子,分母不变。带分数化成假分数时,用整数部分和分母相乘再加分子所得结果作分子,分母不变。
39. A是B的几分之几?用A÷B
40. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
41. 几个数公有的因数,叫做这几个数的公因数。其中最大的一个叫做这几个数的最大公因数。通常把每个数分解质因数,把它们所有的公有质因数相乘,来求最大公因数。
42. 如果两个数的公因数只有1,这两个数是互质数。两个连续自然数;两个质数;1和其他自然数一定是互质数。
43. 分子和分母只有公因数1的分数叫做最简分数。把一个分数化成和它相等,但分子分母比较小的分数,叫做约分。
44. 几个数公有的倍数,叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。通常把每个数分解质因数,把它们所有的公有质因数和独有质因数相乘,来求最小公倍数。
45. 把异分母分数分别化成和原来分数相等的同分母分数(公分母),叫做通分。
46. 求三个数的最大公因数和最小公倍数时,可以先求其中两个数的最大公因数和最小公倍数,用求出的最大公因数和最小公倍数再与第三个数求最大公因数和最小公倍数。
47. 如果两个数是倍数关系,那么两个数的最大公因数是较小数,最小公倍数是较大数。
48. 如果两个数公因数只有1,那么这两个数的最大公因数是1,最小公倍数是它们的乘积。
49. 两个数公因数只有1的几种特殊情况:1和其他自然数,相邻两个自然数,两个质数。
50. 分数化成小数:用分子除以分母化成小数。小数化成分数:把小数写成分母是10,100,1000……的分数,然后再化成最简分数。