当前位置:首页 » 基础知识 » 初一的数学知识点讲解
扩展阅读
学大教育一对多少钱 2025-01-13 22:18:02
少儿英语知识朋友圈 2025-01-13 22:17:59

初一的数学知识点讲解

发布时间: 2022-07-29 20:13:39

㈠ 初一数学的知识点

不同版本学的内容不同,你学的什么版本?至于学的哪些知识点,你看一下目录就明白了。

㈡ 初一数学全部知识点有哪些

1、正数与负数

在以前学过的0以外的数前面加上负号“—”的数叫负数。

与负数具有相反意义,即以前学过的0以外的数叫做正数。

2、一元一次方程

只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数 不是零的整式方程是一元一次方程。

3、一元一次方程的标准形式:ax+b=0(x 是未知数,a、b 是已知数,且 a≠0)。

4、等式的性质

等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

5、角的比较与运算

如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。

如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。

㈢ 初一的数学知识

一元一次方程

1.方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫做方程。

2.一元一次方程

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。

(3)等式的性质

①等式两边同时加上(或减去)同一个整式,等式仍然成立。

若a=b

那么a+c=b+c

②等式两边同时乘或除以同一个不为0的整式,等式仍然成立。

若a=b

那么有a·c=b·c或a÷c=b÷c(c≠0)

③等式具有传递性。

若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an

3.解方程式的步骤

解一元一次方程的步骤:去分母、去括号、移项、合并同类项、未知数系数化为1。

①去分母:把系数化成整数。

②去括号

③移项:把等式一边的某项变号后移到另一边。

④合并同类项

⑤系数化为1。

2有理数知识点

1.大于0的数叫做正数。

2.在正数前面加上负号“-”的数叫做负数。

3.整数和分数统称为有理数。

4.人们通常用一条直线上的点表示数,这条直线叫做数轴。

5.在直线上任取一个点表示数0,这个点叫做原点。

6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

7.由绝对值的定义可知:

一个正数的绝对值是它本身;

一个负数的绝对值是它的相反数;

0的绝对值是0。

8.正数大于0,0大于负数,正数大于负数。

9.两个负数,绝对值大的反而小。

10.有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

11.有理数的加法中,两个数相加,交换交换加数的位置,和不变。

12.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

13.有理数减法法则:减去一个数,等于加上这个数的相反数。

14.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。

15.有理数中仍然有:乘积是1的两个数互为倒数。

16.一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

17.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

18.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

19.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

20.两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

3不等式与不等式组

1.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

2.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

3.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

4.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

5.不等式的性质:

不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

4整式的重要知识点

1.整式:整式为单项式和多项式的统称。

2.整式加减

整式的加减运算时,如果遇到括号先去掉括号,再合并同类项。

(1)去括号:几个整式相加减,如果有括号就先去括号,然后再合并同类项。

如果括号外的因数是正数,去括号后原括号内的符号与原来相同。

如果括号外的因数是负数,去括号后原括号内的符号与原来相反。

(2)合并同类项:

合并同类项后,所得项的系数是合并前各项系数的和,且字母部分不变。

3.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。

4.多项式:由若干个单项式相加组成的代数式叫做多项式。

5.同底数幂是指底数相同的幂。

6.同底数幂的乘法:同底数幂相乘,底数不变,指数相加

7.幂的乘方法则:幂的乘方,底数不变,指数相乘。

8.积的乘方:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。

9.单项式与单项式相乘

单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

10.单项式与多项式相乘

单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

11.多项式与多项式相乘

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

12.同底数幂的除法:同底数幂相除,底数不变,指数相减。

13.单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。

14.多项式除以单项式:多项式除以单项式,先把多项式的每一项分别除以这个单项式,再把所得的商相加。

㈣ 初一上册数学简单讲述知识点

第一章
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。

第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。

㈤ 初一数学上册学习方法和知识点

重要知识点
1、数的范围从自然数变成了有理数,包括整数和分数、正数、0和负数,数轴。绝对值
2、平方(幂),这也是一个重点
3、一元一次方程
4、初步认识了几何图形,重点学习的是线段
5、有理数的混合运算,运算律

方法:
课本上讲的定理,你可以自己试着自己去推理。这样不但提高自己的证明能力,也加深对公式的理解。还有就是大量练习题目。基本上每课之后都要做课余练习的题目(不包括老师的作业)。数学成绩的提高,数学方法的掌握都和同学们良好的学习习惯分不开的,因此.良好的数学学习习惯包括:听讲、阅读、探究、作业.听讲:应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记.每堂课结束以后应深思一下进行归纳,做到一课一得.阅读:阅读时应仔细推敲,弄懂弄通每一个概念、定理和法则,对于例题应与同类参考书联系起来一同学习,博采众长,增长知识,发展思维.探究:要学会思考,在问题解决之后再探求一些新的方法,学会从不同角度去思考问题,甚至改变条件或结论去发现新问题,经过一段学习,应当将自己的思路整理一下,以形成自己的思维规律.作业:要先复习后作业,先思考再动笔,做会一类题领会一大片,作业要认真、书写要规范,只有这样脚踏实地,一步一个脚印,才能学好数学.总之,在学习数学的过程中,要认识到数学的重要性,充分发挥自己的主观能动性,从小的细节注意起,养成良好的数学学习习惯,进而培养思考问题、分析问题和解决问题的能力,最终把数学学好.

㈥ 初一数学知识点有哪些

初一数学知识点如下:

1、数轴的三要素:原点、正方向、单位长度。

2、绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

3、加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

4、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

5、多项式:几个单项式的和叫做多项式。

㈦ 初一数学需要掌握的知识点

在初中的时候,我们的数学算是真正进入了更深层次的学习阶段,虽说初中学的数学大部分还是以基础为主,但也能看到其难度正在逐渐上升。数学这门学科非常的灵活,常常一个知识点可以出现各种各样的题型,非常考验学生们的发散思维,同时也能锻炼学生们的刻苦钻研能力。因为数学的多样性,一个稍微难点的题目就可能就会让人思考一下午,因此,如果能够将数学给学进去学好了的话,不仅仅是逻辑思维能力会得到提升,其他各个方面都会得到较大的提升。

不过,也正是因为数学的多变性,导致很多同学都觉得数学太难了,明明上课老师讲的东西都听得懂,可一到做题的时候都提不动笔,这主要还是知识点的运用不太熟练。其实,初中阶段的数学还是比较简单的,只要掌握了基本的公式、概念,加上好的解题方法,数学拿到高分,甚至满分是完全没有问题的。因此,这里也为大家整理了一下初一的数学知识点,数学老师整理:初一数学知识点归纳,初一上下两册都有用!

㈧ 初一数学知识点有哪些

初一数学知识点如下:

1、0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数。

2、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

3、在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成 的形式。

4、有理数中1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

5、数轴的作用:所有的有理数都可以用数轴上的点来表达。

㈨ 初一数学知识要点有哪些

初一数学概念
实数:
—有理数与无理数统称为实数。
有理数:
整数和分数统称为有理数。
无理数:
无理数是指无限不循环小数。
自然数:
表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
数轴:
规定了圆点、正方向和单位长度的直线叫做数轴。
相反数:
符号不同的两个数互为相反数。
倒数:
乘积是1的两个数互为倒数。
绝对值:
数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

数学定理公式
有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
⑵减法法则:减去一个数,等于加上这个数的相反数。
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。
数学第一章相交线

一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。

二、对顶角:是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。

对顶角的性质:对顶角相等。

三、垂直

1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直。其中一条叫做另一条的垂线,它们的交点叫做垂足。记做a⊥b

垂直是相交的一种特殊情形。

2、垂线的性质:

①过一点有且只有一条直线与已知直线垂直;

②连接直线外一点与直线上各点的所有线段中,垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

3、画法:①一靠(已知直线)②二过(定点)③三画(垂线)

4、空间的垂直关系

四、平行线

1、 平行线:在同一平面内,不相交的两条直线叫做平行线。记做a‖b

2、 “三线八角”:两条直线被第三条直线所截形成的

① 同位角:“同方同位”即在两条直线的上方或下方,在第三条直线的同一侧。

② 内错角:“之间两侧”即在两条直线之间,在第三条直线的两侧。

③ 同旁内角“之间同旁”即在两条直线之间,在第三条直线的同旁。

3、 平行公理:经过直线外一点,有且只有一条直线与这条直线平行

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4、 平行线的判定方法

① 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

② 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;

③ 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;

④ 平行于同一条直线的两条直线平行;

⑤ 垂直于同一条直线的两条直线平行。

5、 平行线的性质:

①两条平行线被第三条直线所截,同位角相等;

②两条平行线被第三条直线所截,内错角相等;

③两条平行线被第三条直线所截,同旁内角互补。

6、 两条平行线的距离:同时垂直于两条平行线并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。

7、 命题:判断一件事情的语句,叫做命题,由题设和结论两部分组成。

五平移

1、平移:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

说明:①、平移不改变图形的形状和大小,改变图形的位置;②“将一个图形沿某个方向移动一定的距离”意味着“图形上的每一点都沿着同一方向移动了相同的距离 ”这也是判断一种运动是否为平移的关键。③图形平移的方向,不一定是水平的

2、平移的性质:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等。 初一数学知识点归纳 第一单元 位置1、 能在具体的情景中,确定位置的方法,说出某一物体的位置。2、 用“数对”表示位置,对应列上的数字在前,行上的数字在后,记为(x,y)。3、 “数对”表示位置,易错的是(x,0),(0,y)。4、 认识方位,上北下南左西右东,两个事物一个在另一个的方向。 第二单元 分数乘法一、分数乘整数1、 意义:表示几个相同分数相加。2、 计算方法:(1)、分母不变,分子和整数相乘。 (2)、当分母和整数可以约分时,要先约分。二、分数乘分数1、意义:就是一个分数的几分之几。2、计算方法:(1)、分子乘分子,分母乘分母。。 (2)、分子和分母有能约分的要约分,再计算。三、运算律的运用1、整数乘法的运算律对于分数乘法同样适用。2、应用运算律简便计算。四、倒数1、乘积是1的两个数互为倒数。2、求法:把数的分子和分母的位置颠倒。3、1的倒数就是1本身,0没有倒数。五、解决问题1、求一个数的几分之几。列式:标准量×几分之几2、求一个数多(或少)几分之几。列式:标准量×(1±几分之几) 标准量土标准量×几分之几3、 求一个数占另一个数的几分之几。列式:几分之几4、 用画线段图分析分数乘法应用题的数量关系。 第三单元 分数除法一、 类型1、 分数除以整数,表示把分数平均分成整数份。2、 分数除以分数,表示b/a中有多少个d/c。3、 整数除以分数,表示a中有多少个c/d。二、 计算方法:除以一个数等于乘这个数的倒数(0除外)。三、 分数除法的意义与整数除法相同,都是乘法的逆运算。四、 分数混合运算顺序,简便算法。五、 解决问题1、 甲数是乙数的几分之几。列式:甲/乙。2、 乙数的几分之几等于甲数。列式:甲数=乙数×几分之几。乙数=甲数÷几分之几。3、 甲数比乙数多(或少)几分之几。列式:甲数=乙数×(1土几分之几)甲数=乙数土乙数×几分之几。标准量:“比”字后面的为标准量。4、 若求长方形的长是宽的几倍:就是求长和宽的比:长/宽。若求长方形的宽是长的几分之几,就是求长和宽的比:长/宽。六、 比的意义:用两个数相除,又叫两个数的比,符号“:”比的结果叫做比值。1、 在a:b中,a叫比的前项,b叫比的后项。2、 比与除法和分数的关系。a:b=a÷b=a/b。3、 求比值两项的单位名称要统一,比值是一个数,没有单位。4、 比的基本性质a:b=am:bma:b=a÷m:b÷m5、 比化成最简整数比:(1) 有分数,前项和后项都乘分母的最小公倍数。(2) 无分数,前项和后项都除以最大公约数。(3) 有小数,可先化为整数或分数。6、解决问题总量×被分份数/总份数=要求的量 第四单元圆一、 圆的认识,由曲线围成,外形美,易滚动。1、 圆心,用o表示。2、 半径,连接圆心和圆上任意一点的线段叫半径,用r表示。3、 直径,通过圆心并且两端都在圆上的线段叫直径,用d表示。4、 半径和直径的关系。5、 轴对称图形及对称轴,圆又无数条对称轴,是直径所在的直线。二、 圆的周长1、 圆周率,是周长与直径的比,是无限不循环小数。2、 公式:c=πd或c=2πr3、 已知圆的周长求半径和直径。三、 圆的面积1、公式S=πR22、已知圆的半径、直径或周长能分别求圆的面积。3、环形面积公式S=πR2-πr24、扇形、弧、圆心角。5、在周长一定的情况下,圆的面积最大。在面积一定的情况下,圆的周长最短。6、 确定起跑线的位置。 第五单元百分数1、 百分数的写法。百分号“%”2、 百分数的意义:表示一个数是另一个数的百分之几。3、 百分数与分数的区别:分数既可以表示一个具体的数,又可以表示两个数之间的关系。百分数表示一个数是另一个数的百分之几,只表示两个数的关系,不是具体的数,不能写单位名称。另外百分数的分子可以是小数和大于一百的数。4、 百分数与分数、小数的互化。百分数化为小数:去掉百分号,小数点向左移动两位;小数化为百分数:小数点向右移动两位,添上百分号;百分数化为分数:可先化为分母是一百的分数,能约分的要约分;分数化为百分数:先把分数化为小数,再化为百分数。5、解决问题①、达标率,发芽率的公式。(甲占乙的百分之几。)达标率=达标的人数/总人数×100%发芽率=发芽的数量/种子的总数×100%②、甲比乙少(或多)百分之几。确定单位“1”。③、甲增加了百分之几是多少?增加了多少?6、折扣,表示十分之几,也就是百分之几十。折扣问题求实求一个数的百分之几是多少的问题。7、纳税。①、根据国家各种税法的规定,按照一定的比率,把集体或个人的收入的一部分缴纳给国家叫做纳税。②、缴纳的税款叫做应纳税额。按一定的比率纳税叫做税率。③、税率=应纳税款/各种收入×100%应纳税款=税率×各种收入。8、利率。①、存款的好处。②、利息=本金×利率×时间③、取款=本金+利息-利息税(本金+税后利息)。 第六单元统计一、 扇形统计图1、 能反映部分量同总量之间的关系2、 用整个圆表示总量,用各个扇形表示各部分数量占总量的百分之几。3、 利用扇形统计图计算分析。二、 合理存款1、 教育储蓄。2、 国债利率3、 设计存款方案4、 合理存款 第七单元数学广角鸡兔同笼问题利用解方程的方法解决问题。