1. 六年级上册数学书的内容有哪些
六年级数学上册电子课本目录
1分数乘法
2位置与方向(二)
3分数除法
4比
5圆
确定起跑线
6百分数(一)
7扇形统计图
节约用水
8数学广角──数与形
《小学教材全解:6年级数学(上)(人教课标版)》“能力提升”对知识的综合点、延伸点、拓展点进行讲解,重点培养思维的缜密性,解题方法和技巧的多样性,阅读后开发智力,拓展思维,提升创新能力。
本书“考点题库”为学生自主检测准备了科学高效的优化习题,是对教材习题的有效补充:“赛点题库”精选的思维拓展训练题,能够激发潜能,提升能力。
“单元复习”归纳重点知识与巧练考点精题结合,连点成线:“期末复习”分领域进行知识梳理与训练,将知识连线成面,点、线、面交织,形成树状知识体系。
“趣味数学”和“信息窗口”是将关于数学的知识起源、趣闻、趣题、伟大的科学家等课外资料与课内知识有机结合,浏览后可拓宽视野,提高数学素养。
2. 六年级数学知识树
数学的知识框架,就是你们这一年的数学书里主要分为几个模块,这是主干(根据内容决定),比如说你们的目录(有主目录,次目录)就是一种框架,可以做参考
比如:六年级有2本书,你可以先写第一本书,书里有12345678个章节(我也不知道有几个章节,那几个有联系,这是打个比方,作为模板),每个章节讲得都是不同的内容,1章一般是总论,而23章中讲得联系比较大,45章节有联系,67也有联系,你就把他们之间的联系找出来,归纳一类,而后,归纳这个章节的知识点,从主要概括到最后具体的内容解释,这样就完成了
例子:
六年级数学
/ \
/ \
上册 下册
/ ! \
分别是 -- 23 45 67章的概要
知识点-- / ! \
(这是竖着画的,因为是是知识树嘛!我们现在习惯话横着的,就是总的在左边,然后从上到下竖着分,都一样,习惯而已)
可以依次向下分,我就是举个例子,具体怎么样,你可以参考你们的课本目录,而且照我的说法你的工作量会很大,这个你也可以简略写,不用分的那么细 ,因为我们做知识框架的目的就是为了方便记忆,使看的容易一些,让那个繁琐的知识点联系起来,有条理一些罢了,所以,这也是因人而异的
希望对你有所帮助!!
3. 数学树状图怎么画
01
显性放回
现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”、“3”.第一次从这三张卡片中随机抽取一张,记下数字后放回;第二次再从这三张卡片中随机抽取一张并记下数字.请用画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.
02
分析:
从题中文字“记下数字后放回”知本题属于“显性放回”.本题中的事件是摸两次卡片,看卡片的数字,由此可以确定事件包括两个环节.摸第一张卡片,放回去,再摸第二张卡片,所以树状图应该画两层.
第一张卡片的数字可能是1,2,3等3个中的一个,所以第一层应画3个分叉;
第二次摸取卡片,由于放回,第二个球的数字可能是3个中的一个,所以第二层应接在第一层的3个分叉上,每个小分支上,再有3个分叉.
画出树状图,这样共得到3×3=9种情况,从中找出第二次抽取的数字大于第一次抽取的数字的情况,再求出概率.
03
显性不放回
例2 一个不透明的布袋里装有4个大小、质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4.小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.
(1)共有几种可能的结果;
(2)请用画树状图的方法求两次摸出的乒乓球的数字之积为偶数的概率.
04
分析:
本题属于“显性不放回”.本题中的事件是摸两个乒乓球,看乒乓球的数字,由此可以确定事件包括两个环节,所以树状图应该画两层.第一个乒乓球的数字可能是1,-2,3,-4等4个中的一个,所以第一层应画4个分叉;由于不放回,第二个乒乓球的数字可能是剩下的3个中的一个,所以第二层应接在第一层的4个分叉上,每个小分支上,再有3个分叉,画出树状图.
05
隐形放回
小明骑自行车从家去学校,途经装有红、绿灯的三个路口,假没他在每个路口遇到红灯和绿灯的概率均为,则小明经过这三个路口时,恰有一次遇到红灯的慨率是多少?请用画树状图的方法加以说明.
06
分析:
通过反复分析知本题属于“隐形放回”问题,比较容易出错.其实问题相当于一个口袋里有红球和绿球各1个,放回地随机取三次.本题中的事件是小明骑自行车从家去学校,途经装有红、绿灯的三个路口,由此可以确定事件包括三个环节,所以树状图应该画三层.由于每一个路口可能是红灯,绿灯等2个中的一个,所以每一层的分叉的小分支上都有两个小分叉.
07
隐形不放回
小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为白色、灰色.小明从中任意取出1支水笔和1块橡皮配套使用,试用树状图或表格列出所有可能的结果,并求取出红色水笔和白色橡皮配套的概率.
08
分析:
从文字中稍加分析知,本题属于“隐性不放回”,而且选取时有指明对象,是水笔和橡皮.本题中的事件是小明有3支水笔为红色、蓝色、黑色;有2块橡皮为白色、灰色,取出1支水笔和1块橡皮配套使用.由此可以确定事件包括两个环节,所以树状图应该画两层.至于水笔和橡皮哪个先取,可以随便,不影响结果,关键是各层的分叉要画对.
09
有两个不同形状的计算器(分别记为A,B)和与之匹配的保护盖(分别记为a,6)(如图所示)散乱地放在桌子上,若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.
10
分析:
从文字中理解本题属于“隐性不放回”,而且随机选取没有指明对象是计算器还是保护盖,比较容易出错,本题中的事件是从计算器和保护盖中随机取两个,看恰好匹配.由此可以确定事件包括两个环节,取第一个,不放回去,然后再取第二个,所以树状图应该画两层.取第一个可能是A,B,a,b等4个中的一个,所以第一层应画4个分叉;再看第二层,由于不放回,取第二个可能是剩下的3个中的一个,所以第二层应接在第一层的4个分叉上,每个小分支上,再有3个分叉,画出树状图.
4. 小学数学知识框架图
长方形周长:(长+宽)*2 注:*表示乘,/表示除。
长方形面积:长*宽
正方形周长:边长*4
正方形面积:边长*边长
梯形面积:(上底+下底)*高/2
三角形面积:底*高/2
圆形周长:3.14*直径或3.14*半径*2
圆形面积:3.14*半径的平方,也就是3.14*半径*半径
平行四边形面积:底*高
5. 初中数学如何画树状图
最小树形图,就是给有向带权图中指定一个特殊的点v,求一棵有向生成树T,使得该有向树的根为v,并且T中所有边的总权值最小.最小树形图的第一个算法是1965年朱永津和刘振宏提出的复杂度为O(VE)的算法.
判断是否存在树形图的方法很简单,只需要以v为根作一次图的遍历就可以了,所以下面的算法中不再考虑树形图不存在的情况.
在所有操作开始之前,我们需要把图中所有的自环全都清除.很明显,自环是不可能在任何一个树形图上的.只有进行了这步操作,总算法复杂度才真正能保证是O(VE).
首先为除根之外的每个点选定一条入边,这条入边一定要是所有入边中最小的.现在所有的最小入边都选择出来了,如果这个入边集不存在有向环的话,我们可以 证明这个集合就是该图的最小树形图.这个证明并不是很难.如果存在有向环的话,我们就要将这个有向环所称一个人工顶点,同时改变图中边的权.假设某点u在 该环上,并设这个环中指向u的边权是in[u],那么对于每条从u出发的边(u, i, w),在新图中连接(new, i, w)的边,其中new为新加的人工顶点; 对于每条进入u的边(i, u, w),在新图中建立边(i, new, w-in[u])的边.为什么入边的权要减去in[u],这个后面会解释,在这里先给出算法的步骤.然后可以证明,新图中最小树形图的权加上旧图中被收缩 的那个环的权和,就是原图中最小树形图的权.
上面结论也不做证明了.现在依据上面的结论,说明一下为什么出边的权不变,入边的权要减去in [u].对于新图中的最小树形图T,设指向人工节点的边为e.将人工节点展开以后,e指向了一个环.假设原先e是指向u的,这个时候我们将环上指向u的边 in[u]删除,这样就得到了原图中的一个树形图.我们会发现,如果新图中e的权w'(e)是原图中e的权w(e)减去in[u]权的话,那么在我们删除 掉in[u],并且将e恢复为原图状态的时候,这个树形图的权仍然是新图树形图的权加环的权,而这个权值正是最小树形图的权值.所以在展开节点之后,我们 得到的仍然是最小树形图.逐步展开所有的人工节点,就会得到初始图的最小树形图了.
如果实现得很聪明的话,可以达到找最小入边O(E),找环 O(V),收缩O(E),其中在找环O(V)这里需要一点技巧.这样每次收缩的复杂度是O(E),然后最多会收缩几次呢?由于我们一开始已经拿掉了所有的 自环,我门可以知道每个环至少包含2个点,收缩成1个点之后,总点数减少了至少1.当整个图收缩到只有1个点的时候,最小树形图就不不用求了.所以我们最 多只会进行V-1次的收缩,所以总得复杂度自然是O(VE)了.由此可见,如果一开始不除去自环的话,理论复杂度会和自环的数目有关.
6. 我要做一个小学数学知识结构图,一到六年纪的全要,最好在一张表上做出来,就是结构图那种.谢谢!!!
数学思想和方法 画线段辅助理解问题。 1.找出已知条件并列表整理问题。2.图形结合的思想。 1.数表结合解决问题。2.倒推思想解决问题。
应用知识 1.方位辨别;2.统计知识:分类统计。3.概率知识:“可能性” 1.物体的正面、侧面和上面。2.统计知识:画“正”字表示次数。3.轴对称图形(对称轴) 1.间隔问题。2.平移和旋转(顺时针和逆时针)3.统计知识:各种统计图。 1.找规律:根据已知的推测未知的。2.确定位置:行和列。 概率知识
应用题 题目中的条件和问题,列出加法、减法一步算式,并注明单位名称。 1.加法、减法、乘法和除法一步计算的应用题。2.各种量的应用题。 1.平均数问题。2.混合运算应用题。3.各种量的应用题。 1.量的计算问题。2.混合运算应用题。 1.解答三步计算的应用题。2.相遇问题 1.工程问题。2.百分数的实际应用。3.比例。
几何初步知识 1.长方形、正方形、三角形和圆的直观认识;2.长方体、正方体、圆柱和球的直观认识。
1.直线和线段的初步认识。2.多边形。3.角的认识。 长方形和正方形的特征。长方形和正方形的周长和面积计算。 1.角的测量。2.平行和相交。3.三角形的性质。4.平行四边形和梯形的认识。5.垂线。 1.圆的认识,圆的周长和面积计算。2.多边形面积的计算。 长方体、正方体、圆柱、圆锥的表面积和体积计算。
量与计算 1.钟面的认识。2.人民币的认识和简单计算。 1.时间单位的认识。2.长度单位的认识和简单计算。3.重量单位的认识。
1.面积单位的认识和换算。2.24时计时法;时间段的计算。3.年、月、日。4.千米和吨。 统计单位—升和毫升。 体积单位
数与计算 20和100以内数的认识、加减法(口算、列竖式) 1.万以内数的读法和写法。2.两位数加、减两位数,用加法验算减法。3.表内乘法和表内除法。4.混合运算。 1.四则混合运算。2.分数的认识和分母相同的分数加减计算。3.小数的认识和加减计算。 1.积和商的性质。2.运算定律。3.倍数和因数。4.素数和和数。5.奇数和偶数。6.整数和自然数。 1.认识负数。2.小数的四则运算。3.公倍数、公因数。4.分数的性质及计算。5.初步代数知识—方程。 1.百分数。2.比和比例。3.分数的四则运算。
年级 一年级 二年级 三年级 四年级 五年级 六年级
7. 数学的树形图怎么画
以摇两个骰子为例:第一行写上骰子一,因为骰子能摇出六种可能,所以把这六种可能并排着都写出来,然后再另起一行,写上骰子二,同样有六种可能,然后就在上面写出的六种可能下面分别写上这六个可能,就完了。其他类型也以此类推,反正就是先写出第一个条件的所有可能,再在所有可能下面分别写出第二个条件的所有可能,以此类推。
8. 关于数学的知识结构图怎么画说详细点。
其实很简单
就是画树状图。
你把这学期的章节分别写出来,然后这章里的重点列出来。
主要就是写成树状图的形式,也就是结构图了。
你现在是几年级啊,小学吧
这种需要自己理解与感悟和书上的知识进行归纳
我给你个参考图
按这个来吧
不懂再问,望采纳!