❶ 小学数学知识点总结(全部)
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
❷ 数学与应用数学专业的主要课程有哪些
我本人虽然不是数学专业的,但我有一个好哥们是数学专业的,平时常在一起玩。所以对他们专业学的内容还算比较了解。
大三、大四就进入到专业课的学习了。数学专业会有《偏微分方程》、《泛函分析》、《拓扑学》、《小波分析》、《模糊数学》等课程。我自己作为非数学类专业,到了研究生时才会学习《泛函分析》和《小波分析》,当然,是选修课。
以上就是我从我哥们处了解到的一些数学专业学习的课程内容,肯定不全面,欢迎大家补充。
❸ 求数学分析(大一上)的常用知识点与思想!急!!!!
你去网络文库理学部分去下载,那里有大量关于数学分析的思想、技巧和方法的总结,而且是免费的。
❹ 大一上学期期末考试数学分析主要考什么
1、大一上册数学分析主要考:①绪论中实数连系统②函数(函数的定义、复合函数和反函数、初等函数)③极限与函数的连续性(数列极限、函数极限、函数的连续性)④微分与微商(微分与微商的概念、隐函数与参数方程微分方程)⑤微分中值定理及其应用(微分中值定理、洛比达法则、函数的凹凸性、函数的最值)等内容。
2、数学分析又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
3、数学分析的基本方法是极限的方法,或者说是无穷小分析。洛比达(L’Hospital)于1696年在巴黎出版的世界上第一本微积分教科书,欧拉于1748年出版的两卷本沟通微积分与初等分析的书,书名中都出现过无穷小分析这个词。在微积分学发展的初期,这种新的方法显示出巨大的力量,因而得到大批重要的成果。许多与微积分有关的新的数学分支,如变分法、微分方程以至于微分几何和复变函数论,都在18—19世纪初发展起来。然而,初期的分析还是比较粗糙的,被新方法的力量鼓舞的数学家们经常不顾演绎的逻辑根据,使用着直观的猜测和自相矛盾的推理,以致在整个18世纪,对这种方法的合理性普遍存在着怀疑。这些怀疑在很大程度上是从当时经常使用的无穷小的含义与用法上引起的。随意使用与解释无穷小导致了混乱和神秘感。许多人参与了无穷小本质的论争,其中有些人,如拉格朗日(Lagrange),试图排除无穷小与极限,把微积分代数化。论争使函数与极限的概念逐渐明朗化。越来越多的的数学家认识到,必须把数学分析的概念与其在客观世界的原型以及人的直觉区分开来。
❺ 求 数学分析(华东师范版) 的重点归纳
数学分析的重点无非是各种积分,级数,还有完备性定理。
❻ 数学与应用数学专业考研中数学分析和高等代数的重点又是什么呢
要看你报到学校,根据真题研究出重点. 不同学校专业课重点差异很大的,而真题重复出现的可能也不小.今年首师数分就有原题.你可以做做比较着名的钱吉林或裴礼文的习题集,毕竟高代数分都是大一学的了,要靠大量的习题把知识重新熟悉下.总之最重要的还是真题.
❼ 大学数学分析的知识在解析几何的应用,求一到两个例子
不用例子,翻翻数学分析或高等数学的教材,曲线的切线与法平面,曲面的切平面与法线,就是。
❽ 数学分析课程的重点是哪些部分,学习时需要重点注意掌握什么
数学分析每个章节都是重点! 不过在一些垃圾的学校,他们会把实数的完备性,定积分的可积性理论,柯西级数,以及反常重积分,n重积分以及场论……这些可能会淡化,一带而过,甚至是根本不上,数学分析简直当做高等数学来上。 我只能说这些学校是在误人子弟,数学分析真正的精髓部分不上。 所以要想学好数学分析就必须要靠自己,数学分析需要掌握最重要的技能就是利用定义来证明,这也就是所谓的“分析”,这也正式数学分析和高等代数的区别之处。 学习数学分析很重要的一点就是证明,然而最基本的就是书上的定理的证明。我想问一下:书上的每个定理你是否会证明?如果你的答案是肯定的,那么相信你的数学分析一定学得很好。 书上的定理都会了,再去做一些题目。 推荐几本书:裴礼文的《数学分析中的典型问题和方法》。 当然你想做难一点的有周明强的《数学分析习题演练》。 总之一句话,数学分析中全是重点。
❾ 数学分析的重点章节有哪些
上册:极限,等价无穷小,三种间断点,上下确界,聚点,导数,微分中值定理,洛必达法则,泰勒公式极其展开式,不定积分与定积分的计算方法,
下册:幂级数,一致收敛,偏导数与全微分,隐函数的条件极值,无穷积分与瑕积分的收敛与发散,含参变量积分,二重积分,第二型曲线积分,
差不多这么多,具体还要看老师偏向哪一面
❿ 如何学好小学数学如何应用分析发解题
解答应用题一直是许多孩子做数学题的“心头大患”,因为它既要综合应用小学数学中的概念性质、法则、公式、数量关系和解题方法等最基本的知识
数量关系分析法
数量关系是指应用题中已知数量和未知数量之间的关系,只有搞清数量关系,才能根据四则运算的意义恰当的选择算法,把数学问题转化为数学式子,通过计算进行解答。数量关系分析法分为三步:
(一)寻找题中的数量。
(二)明确各数量间的关系。
(三)解决各个产生的问题。下面以一道例题的教学从以下几方面来谈数量关系分析法的运用。
家长在家辅导孩子作业可以参考老师的引导方法教导孩子思考的角度和方法,养成孩子独立思考、快速解答的好习惯:
如题:“学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级3倍,五年级参加的人数比三、四年级参加的总人数多12人,五年级参加比赛的有多少人?”
解题思路:
师:题中有几个数量呢?
生:三个。
师:哪两个数量之间有直接关系呢?
生:三年级有35人参加比赛,四年级参加的人数是三年级3倍。
师:这两个数量间的关系让我们头脑中产生一个什么问题呢?
生:四年级有多少人参加比赛?
师:怎样列式解答这个问题呢?
生:用乘法35 ×3=105(人)。
师:现在又多了一个数量:四年级有105人参加比赛,那么哪两个数量间又存在关系呢?根据他们的关系可以产生一个怎样的问题?
生:三年级有35人参加比赛,四年级有105人参加比赛。
问题是:三四年级参加比赛一共有多少人?
师:所以第二步算式怎样列呢?
生:105+35=140(人)。
师:根据现在已经产生的数量,又有哪两个数量间的关系存在呢?
生:三、四年级参加比赛一共有多140人,五年级参加的人数比三、四年级参加的总人数多12人。
师:这两个数量间的关系能帮助我们解决什么问题呢?
生:五年级参加比赛的有多少人?
师:那么解决最后问题的算式怎样列出呢?
生:140+12=152(人)
问题中心散射倒推法
所谓的“问题中心散射法”就是根据分析法这一思路模式,让孩子从最后的问题出发,不断地逆向推理,层层解决。
即从问题所要求的量开始探究,先要想一下,要知道所求的量,就必须知道的条件是什么,要使这些条件成立,又必须具备另外哪些条件,这样推究下去,直到所需要的条件都是题目中所给的已知条件时,问题就解决了。
还是以上面这一道应用题为例来谈谈吧。
解题思路:
师:这道题的问题是“五年级参加比赛的有多少人?”要想解决这个问题,在题里面寻找那一句关键的信息提示呢?
生:五年级参加的人数比三、四年级参加的总人数多12人。
师:看来,现在要解决三、四年级参加比赛的总人数才是更关键的。那么这个问题能一下子解决吗?
生:不能,因为三年级参加比赛的人数知道了,可四年级参加比赛的人数不知道。
师:那么四年级参加比赛的人数又怎么求呢?根据题中的什么数学信息呢?
生:三年级有35人参加比赛,四年级参加的人数是三年级3倍。列式是35 ×3=105(人)。
师:根据我们刚才的分析,接下来第二步求什么/怎样列式?
生:三、四年级参加比赛的总人数是多少?105+35=140(人)。
师:接下来呢?
生:五年级参加的人数是多少?140+12=152(人)
线段图示助解分析法
运用图示法解析应用题,是培养孩子思维能力的有效方法之一。图示法不仅可以形象地、直观地反映应用题的数量关系,启发孩子的解题思路,帮助孩子找到解题的途径,而且通过画图的训练,可以调动孩子思维的积极性,提高孩子分析问题和解决问题的能力。
在解答应用题时,可以先把应用题中的已知条件和所求的问题用图表示出来,然后通过图去寻找解答应用题的方法。
除此之外还可以采用许多方法。如列表法、比较法、方程法等,注重教给孩子学习的方法,使孩子能逐步独立地分析和解决问题。我们帮助孩子形成正确的思维规律,掌握了正确的思维方法,做到举一反三,切实提高解答应用题的能力。
如下四种具体应用题题型详解:
1.一般应用题
一般应用题没有固定的结构,也没有解题规律可循,完全要依赖分析题目的数量关系找出解题的线索。
要点:从条件入手?从问题入手?
从条件入手分析时,要随时注意题目的问题
从问题入手分析时,要随时注意题目的已知条件。
例题如下:
某五金厂一车间要生产1100个零件,已经生产了5天,平均每天生产130个。剩下的如果平均每天生产150个,还需几天完成?
思路分析:
已知“已经生产了5天,平均每天生产130个”,就可以求出已经生产的个数。
已知“要生产1100个机器零件”和已经生产的个数,已知“剩下的平均每天生产150个”,就可以求出还需几天完成。
2.典型应用题
用两步或两步以上运算解答的应用题中,有的题目由于具有特殊的结构,因而可以用特定的步骤和方法来解答,这样的应用题通常称为典型应用题。
A.求平均数应用题
解答求平均数问题的规律是:总数量÷对应总份数=平均数
注:在这类应用题中,我们要抓住的是对应关系,可根据总数量来划分成不同的子数量,再一一地根据子数量找出各自的份数,最终得出对应关系。
例题如下:
一台碾米机,上午4小时碾米1360千克,下午3小时碾米1096千克,这天平均每小时碾米约多少千克?
思路分析:
要求这天平均每小时碾米约多少千克,需解决以下三个问题:
1、这一天总共碾了多少米?(一天包括上午、下午)。
2、这一天总共工作了多少小时?(上午的4小时,下午的3小时)。
3、这一天的总数量是多少?这一天的总份数是多少?(从而找出了对应关系,问题也就得到了解决。)
B.归一问题
归一问题的题目结构是:
题目的前部分是已知条件,是一组相关联的量;题目的后半部分是问题,也是一组相关联的量,其中有一个量是未知的。
解题规律:先求出单一的量,然后再根据问题,或求单一量的几倍是多少,或求有几个单一量。
例题如下:
6.台拖拉机4小时耕地300亩,照这样计数,8台拖拉机7小时可耕地多少亩?
思路分析:
先求出单一量,即1台拖拉机1小时耕地的亩数,再求8台拖拉机7小时耕地的亩数。
3.相遇问题
指两运动物体从两地以不同的速度作相向运动。
相遇问题的基本关系是:
1. 相遇时间=相隔距离(两个物体运动时)÷速度和
例题如下:两地相距500米,小红和小明同时从两地相向而行,小红每分钟行60米,小明每分钟行65米,几分钟相遇?
2. 相隔距离(两物体运动时)=速度之和×相遇时间
例题如下:一列客车和一列货车分别从甲乙两地同时相对开出,10小时后在途中相遇。已知货车平均每小时行45千米,客车每小时的速度比货车快20%,求甲乙相距多少千米?
3. 甲速=相隔距离(两个物体运动时)÷相遇时间-乙速
例题如下:一列货车和一列客车同时从相距648千米的两地相对开出,4.5小时相遇。客车每小时行80千米,货车每小时行多少千米?
相遇问题可以有不少变化。
如两个物体从两地相向而行,但不同时出发;
或者其中一个物体中途停顿了一下;
或两个运动的物体相遇后又各自继续走了一段距离等,都要结合具体情况进行分析。
另:相遇问题可以引申为工程问题:即工效和×合做时间=工作总量
4.工程问题
工程问题是研究工作效率、工作时间和工作总量的问题。
题目特点:
工作总量没有给出实际数量,把它看做“1”,工作效率用来表示,所求问题大多是合作时间。
例题如下:
一件工程,甲工程队修建需要8天,乙工程队修建需要12天,两队合修4天后,剩下的任务,有乙工程队单独修,还需几天?
思路分析:
把一件工程的工作量看作“1”,则甲的工作效率是1/8,乙的工作效率是1/12。
已知两队合修了4天,就可求出合修的工作量,进而也就能求出剩下的工作量。
用剩下的工作量除以乙的工作效率,就是还需要几天完成。