当前位置:首页 » 基础知识 » 益智数学知识点
扩展阅读
ug怎么退出经典模式 2025-01-16 13:40:59
广州突破教育怎么样 2025-01-16 13:30:06
泽带字的歌词有哪些 2025-01-16 13:29:26

益智数学知识点

发布时间: 2022-07-24 05:57:22

⑴ 有趣的数学知识有哪些

有趣的数学知识有如下:

1、没有最大的质数。欧几里得给出了优美而简单的证明。

2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。

3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。


4、黄金分割提出者是毕达哥拉斯。有一次,毕达哥拉斯路过铁匠作坊,被叮叮当当的打铁声迷住了。为了揭开这些声音的秘密,他测量了铁锤和铁砧的尺寸,发现它们存在着十分和谐的比例关系。回家后,他取出一根线,分为两段,反复比较,最后认定1:0.618的比例最为优美。这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。

5、假如一条线段两端加上向外的两条斜线,另一条线段两端加上向内的两条斜线,则前者要显得比后者长得多。对于这种错觉有一种理论,叫神经抑制作用理论。

它认为当两个轮廓彼此贴近时,视网膜上相邻的神经团会相互抑制,结果轮廓发生了位移,产生错觉。

⑵ 关于数学的知识有哪些

初中数学宝典,你知道学习数学最重要的是什么吗?
在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!

复习笔记
初中数学宝典----复习
很多的学生在刚开始的时候学习这们课程不费劲但是往后可能会学的非常吃力,其实这就是因为在学习后边的内容时将之前的内容忘掉了,所以会导致学习比较吃力,所以现在就需要用到我们的初中数学宝典--复习.
在数学的复习上,我们一定要去研究解题的思路和解题的步骤,这样我们的成绩才会提高,数学试题无论如何变化都离不开最为基本的理论,因此我们要在自己的脑海中建立一个数学的知识树.
我们在复习数学的时候,一定要对基础的知识进行整理和回顾,数学是一个阶梯式的课程,因此我们要建立起一个数学的知识树,我们要先在大脑中设想这棵知识树,然后找出自己的不足所在,在进行针对性的回顾,对于那写容易搞混的知识点,要进行梳理并且做到完全的区分,最重要的一点是,我们应该多层次的去分析问题,举一反三,将重点放在我们的解题思路上.
数学的复习,要秉承一个原则,那就是小题突破大题稳定,我们不可能在大题上做到突破但是在小题上可以做到这一点,有意识的练习自己选择题和填空题的答题速度,当然速度是在正确的情况下,这样会给下面的试题留下很多的思考时间,使用各种方法来进行解答.
在数学的复习上,我们一定要去研究解题的思路和解题的步骤,这样我们的成绩才会提高,数学试题无论如何变化都离不开最为基本的理论,因此在脑海中建立一个数学的知识树是非常必要的,这可以更快速的帮助自己解题.

复习知识点
以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.

⑶ 扑克牌中蕴含了哪些有趣的数学知识

这个好理解
扑克牌是一种大众娱乐工具。相传早在秦末楚汉相争时期,大将军韩信为了缓解士兵的思乡之愁,发明了一种纸牌 游戏,因为牌面只有树叶大小,所以被称为“叶子戏”,后来发展成为现在的54张扑克牌。

扑克牌的54张模式解释起来也非常奇妙:
大王代表太阳、小王代表月亮,其余52张牌代表一年中的52个星期;
红桃、方块、梅花、黑桃四种花色分别象征着春、夏、秋、冬四个季节;
每种花色有13张牌,表示每个季节有13个星期。
如果把J、Q、K当作11、12、13点,大王、小王为半点,一副扑克牌的总点数恰好是365点。而闰年把大、小王各算为1点,共366点。
专家普遍认为,以上解释并非巧合,因为扑克牌的设计和发明与星相、占卜以及天文、历法有着千丝万缕的联系。但在扑克牌中包含着很多的数学知识,你知道吗?

一、扑克牌中的对称图形

扑克牌中有红桃、方块、梅花、黑桃四种花色,而每一种花色都是一个轴对称图形,其中方块不仅是轴对称图形,而且是中心对称图形,正是因为它们具有了这些对称的特征,所以才有了绝妙的数学试题。
如2007年甘肃省白银等7市新课程数学试题第4小题:
4张扑克牌如图(1)所示放在桌面上,小敏把其中一张旋转180°后得到如图(2)所示,那么她所旋转的牌从左数起是()
A.第一张 B.第二张 C.第三张 D.第四张
这个题设计新颖,构思精巧,可谓独具匠心,通过扑克牌的操作,探索图形中存在的变化规律,让学生亲身经历知识的发生,发展及其应用过程,学生观察(1)(2)两图会发现它们没有任何变化,但试题的设置精巧在只有旋转方块9,才能有(1)、(2)两图的结果。试题有效考查了学生对中心对称这一知识点的理解和掌握情况,同时也培养了学生发现问题和解决问题的能力。

二、扑克牌中的计算问题
有一种“二十四点”的游戏,其游戏规则是这样的:从一付扑克牌(去掉大、小王)中任意抽取四张牌,其中A,2,3,…,K依次代表1,2,3,…,13,根据牌面上的数字进行加、减、乘、除四则运算(可以使用括号,但每张牌不重复使用),使运算结果为24.

如,任意从一付扑克牌(去掉大、小王)中抽取四张牌,其中A,2,3,…,K依次代表1,2,3,…,13,红色扑克牌、黑桃和方块代表正数,草花代表负数. 小聪同学抽到的四张牌是红桃3、黑桃4、方块10和草花6,请你帮助小聪将这四个有理数(每个数只用一次)进行加、减、乘、除四则运算(可以使用括号),列出三种不同的算式,使其结果为24。本游戏的实质是将四个有理数3,4,10,-6,运用上述规则写出三种不同的算式,使其结果为24。比如10-4-3×(-6)=24;4-(-6)÷3×10;你还能写出一种吗?

通过扑克牌中“二十四点”的计算,可以培养学生学习有理数运算的兴趣,让学生在一种愉悦的状态下,使枯燥乏味的有理数运算焕发出生命的活力,同时,也能让学生在游戏中增长知识,让学生的思维能力得到发散,从而更能使学生的计算能力得到进一步的升华。这类试题不仅使计算教学在算理、算法、技能这三方面得到和谐的发展和提高,而且也体现了新课程的标准,真正推崇扎实有效、尊重学生个性发展的理性计算教学。
三、扑克牌中的有序排列

每一副新的扑克牌都是按照一定的顺序排列的,即第一张是大王,第二张是小王,然后是黑桃、红桃、方块、梅花四种花色排列,每种花色的牌又按A,2,3,…,J,Q,K的顺序排列。如果将这样的扑克牌按一定的规则进行,那么就可以得到一个很好的命题。
如,2005年全国初中数学竞赛试题第8小题:
有两副扑克牌,每付的排列顺序是:第一张是大王,第二张是小王,然后是黑桃、红桃、方块、梅花四种花色排列,每种花色的牌又按A,2,3,…,J,Q,K的顺序排列。某人把按上述排列的两副扑克牌上下叠放在一起,然后从上到下把第一张丢去,把第二张放在最底层,再把第三张丢去,把第四张放在底层,……如此下去,直至最后只剩下一张牌,则所剩的这张牌是_________。刚看试题,觉得无法下手,但是,我们从简单两张扑克牌入手,按照规则就可以发现剩下的是第二张;如果是四张扑克牌,按照规则就可以发现剩下的是第二张;如果是八张扑克牌,按照规则就可以发现剩下的是第八张;那么我们会发现,扑克牌的张数为2,22,23,…,2n,按照上述操作方法,剩下的一张牌就是这些牌的最后一张。例如,手中只有64张牌,按照上述操作方法,最后只剩下第64张。现在手中有108张牌,多出108-64=44(张),如果按照上述操作方法,先丢去44张,此时手中恰好有64张牌,而按原来顺序的第88张牌恰好放在手中牌的最低层。而88-54-2-26=6,按照两副牌的花色顺序,所剩的最后一张是第二副牌中的方块6。奇妙的构想,形成了绝妙的试题,在这个试题中,很好地运用了扑克牌的有序排列特点,渗透了从一般到特殊的数学思想,使学生在扑克牌的兴趣中,让自己的创造性思维得到了充分的发展。
扑克牌是一种古老而又非常普及的游戏工具,其不同牌之间的组合的随机性不但具有挑战性,而且包含有很多的有趣数学问题,通过扑克牌的游戏激发学生对数学的学习兴趣,培养学生的逻辑思维能力和推理能力。

⑷ 数学趣味小知识 简短的 20到50字左右

1.01的365次方=37.78343433289 >>>1;
1的365次方=1;
0.99的365次方= 0.02551796445229 <<<1;
1.01=1+0.01,也就是每天进步一点,1.01的365次方也就是说每天进步一点,一年以后,你将进步很大,远远大于“1”;
1是指原地踏步,一年以后你还是原地踏步,还是那个“1”;
0.99=1-0.01,也就是说你每天退步一点点,你将在一年以后,远远小于“1”,远远被人抛在后面,将会是“1”事无成。

⑸ 数学趣味小知识.五十字左右.别太多也别太少.

数学趣味小知识 有趣的222
从1、2、……9这九个数中任取三个数,如6、1、7,然后将这三个数不同的排列,列出由这三个数组成的所有的三位数,把列出来的所有三位数相加,得到的和再除以这三个数字的和,它们的商一定是222.不信你试试
如:(617+671+167+176+761+716)÷(6+1+7)=222

⑹ 幼儿数学教学中有哪些知识点

1. 幼儿数学教育的基本观点 1.幼儿学习数学开始于动作 自从皮亚杰提出“抽象的思维起源于动作”后,这已成为幼儿数学教育中广为接受的观点: ① 我们经常能观察到,幼儿在学习数学时,最初是通过动作进行的。例如“对应排列相关联的物体”活动,随着幼儿动作的逐渐内化,他们才能够在头脑中进行这样的对应。 ② 幼儿表现出的这些外部动作,实际上是协调事物之间关系的过程,这对于他们理解数学中的关系是不可或缺的。在幼儿学习某一数学知识的初级阶段,特别需要这种外部的动作。对于那些表现出抽象思维有困难的幼儿,也需要给予他们充分摆弄的机会,这既符合他们的心理需要,也有助于他们的学习。 2.幼儿数学知识的内化需要借助于表象的作用 ①幼儿对数学知识的理解开始于外部的动作,但是要把它们变成头脑中抽象的数学概念,还有赖于内化的过程,即在头脑中重建事物之间的逻辑关系。表象的作用即在于帮助幼儿完成这一内化的过程。 ②但把表象的作用无限夸大也是不适当的做法。 3.幼儿对数学知识的理解要建立在多样化的经验和体验基础上。 由于数学知识是一种抽象的知识,它的获得需要摆脱具体事物的其他无关特征。而幼儿对于数学知识的抽象意义的理解,却是从具体的事物开始。所以幼儿在概念形成的过程中所依赖的具体经验越丰富,他们对数学概念的理解就越具有概括性。因此,为他们提供丰富多样的经验,能帮助幼儿更好地理解数学概念的抽象意义。 4.幼儿抽象数学知识的获得需要符号和语言的关键作用 ①数学知识具有抽象性的特点,幼儿学习数学,最终要从具体的事物中摆脱出来,形成抽象的数学知识。但幼儿头脑中往往只是保存着一些具体的经验,要使之变成概念化的知识,则需要符号体系的参与。 ② 语言在幼儿学习数学的过程中也很重要。数学是一种精练的语言,而语言则是思维的工具。 5.幼儿数学知识的巩固有赖于练习和应用的活动 幼儿数学知识的掌握是一个持续不断地过程。幼儿用自己已有的认知结构内化外部世界,同时也建构着新的知识。

⑺ 有趣的数学科普小知识有哪些

1、假如“一拃”的长度为8厘米,量一下课桌的长为7拃,则可知课桌长为56厘米。如果每步长65厘米,上学时,数一数走了多少步,就能算出从家到学校有多远。

2、身高也是一把尺子。如果身高是150厘米,那么抱住一棵大树,两手正好合拢,这棵树的一周的长度大约是150厘米。因为每个人两臂平伸,两手指尖之间的长度和身高大约是一样的。

3、要是想量树的高,影子也可以帮助。只要量一量树的影子和自己的影子长度就可以了。因为树的高度=树影长×身高÷人影长。

4、若去游玩,要想知道前面的山距你有多远,可以请声音帮量一量。声音每秒能走331米,那么对着山喊一声,再看几秒可听到回声,用331乘听到回声的时间,再除以2就能算出来了。

5、“天象记录员”珊瑚虫科学家们发现,珊瑚虫会在自己身上记录时间:它们在体壁上每天“刻画”一条环纹,一年“刻画”365条,既不多也不少。因此想知道它们的年龄,只要数数它们体壁上的环纹即知。科学家们还发现,3.5亿年前的珊瑚虫,每年“刻画”在身上的环纹不是365条,而是400条。原因是,那时地球自转一天仅为21.9小时,一年不是365天,而是400天。

⑻ 数学小知识。

1、早在2000多年前,我们的祖先就用磁石制作了指示方向的仪器,这种仪器就是司南。

2、最早使用小圆点作为小数点的是德国的数学家,叫克拉维斯。

4、“七巧板”是我国古代的一种拼板玩具,由七块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千,后来传到国外叫做唐图。

5、传说早在四千五百年前,我们的祖先就用刻漏来计时。

6、中国是最早使用四舍五入法进行计算的国家。

7、欧几里得最着名的着作《几何原本》是欧洲数学的基础,提出五大公设,发展为欧几里得几何,被广泛的认为是历史上最成功的教科书。

8、中国南北朝时代南朝数学家、天文学家、物理学家祖冲之把圆周率数值推算到了第7位数。

9、荷兰数学家卢道夫把圆周率推算到了第35位。

10、有“力学之父”美称的阿基米德流传于世的数学着作有10余种,阿基米德曾说过:给我一个支点,我可以翘起地球。这句话告诉我们:要有勇气去寻找这个支点,要用于寻找真理。

(8)益智数学知识点扩展阅读

数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

⑼ 数学最基本的知识点请用是哪些

数学这个东西,小学我就觉得不好学,死缠烂学的学到了点皮毛。
觉得你说的这些。小学最基础且最重要的就是那个好像叫什么乘法口诀吧。对是它。还有加法啊减法啊···等等。然后就是定理,这个还蛮重要的,不过你熟练记得怎么算出答案的话也不算什么了。
记得什么等边、等腰、锐角、等等一些三角形。刚学的时候把我当猴耍。
然后初中就是定理和应用的天下了,我基本就是把定理记得小熟然后加上应用,当时蛮好的,老师长表扬我睡觉也能把他的数学学好。呵呵·说得有点远一点骄傲了。现在都不怎么记得了。
你想要学好它只有找书最实际。还有就是找那些还读书的、做会计的向人家请教一下。

⑽ 益智数学题

1:102-101=1
2:问一下,半杯水是几斤
3:123-45-67+89=100
4:先在每一条边上放2把椅子(不包括顶点),再在两个不相邻的顶点放两把椅子,就OK了
5:先抱狼过去,空手回,再抱一只羊过去,再把狼抱过来,再把羊抱过去,再空手回来把狼抱过去