A. 初一数学上册有理数的所有公式谢谢、、、
有理数的公式:
①加法的交换律 a+b=b+a。
②加法的结合律 a+(b+c)=(a+b)+c。
③存在数0,使 0+a=a+0=a。
④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0。
⑤乘法的交换律 ab=ba。
⑥乘法的结合律 a(bc)=(ab)c。
⑦分配律 a(b+c)=ab+ac。
⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a1=a。
⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。
有理数的认识
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
B. 初一数学上册各章知识点框架结构
注意:这是北师大版的数学书 人教版和这也差不多
七年级上数学复习提纲
第一章 丰富的图形世界
1、 认识生活中常见的几何体特点:圆柱、圆锥、正方体、长方体、棱柱、球
2、 知道常见几何体的分类,一共分为三类:球体、柱体(圆柱、棱柱、正方体、长方体)、锥体(圆锥、棱锥)
3、 平面图形折成立体图形应注意:侧面的个数与底面图形的边数相等。
4、 圆柱的侧面展开图是一个长方形;展开图是两个圆形和一个长方形;
圆锥的展开图是一个扇形和一个圆形;
正方体展开图是一个六个小正方形组成的图形;
长方体的展开图是与正方体的类似。(容易考到)
5、 特殊立体图形的截面图形:
(1)长方体、正方形的截面是:三角形、四边形(长方形、正方形、梯形、平行四边形)、五边形、六边形。
(2)圆柱的截面是:长方形、圆、椭圆。
(3)圆锥的截面是:三角形、圆、椭圆。
(4)球的截面是:圆
6、我们经常把从前面看到的图形叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图。
7、点动成线,线动成面,面动成体。
第二章 有理数
1 、正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数。
与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。
2 、有理数
(1) 正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。0既不是正数,也不是负数。
(2) 通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、方向箭头、单位长度。
在直线上任取一个点表示数0,这个点叫做原点。
(3) 只有符号不同的两个数叫做互为相反数。
特别的:0的相反数是0
(4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身
一个负数的绝对值是它的相反数;
0的绝对值是0;
两个负数,绝对值大的反而小。
3 、有理数的加减法
(1)有理数加法法则:
①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不相等的异号两数相加,取绝对值较大的数符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加和为0。
③一个数同0相加,仍得这个数。
(2) 有理数减法法则:减去一个数,等于加这个数的相反数。
4、 有理数的乘除法
(1) 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
(2) 乘积是1的两个数互为倒数。
(3) 有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
(4) 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0
第三章、字母表示数
1、用运算符号把数和表示数的字母连接而成的字母叫做代数式。
2、求代数式值要注意:字母的取值必须确保代数式有意义;字母的取值要确保它本身所表示的数量有意义。
3、代数式的系数应包括这一项前的符号;如果代数式的某一项只含有字母因数,它的系数就是1或-1,而不是0。
4、同类项所含的字母相同;相同字母的指数也相同。
注意:同类项与系数无关,与字母的排列顺序无关;几个常数项也是同类项。
5、合并同类项法则:在合并同类项时,把同类项的系数相加,字母和其指数不变。
第四章 平面图形及位置关系
1、直线、射线、线段
(1) 直线、射线、线段的区别:直线没有端点;射线一个端点;线段有两个端点。
(2) 线段公理:两点之间,线段最短。
(3)线段的比较方法:叠和法和度量法。
2、角的度量与表示
角的三种表示方法:用三个大写英文字母表示或用一个大写英文字母表示(如:<ABC,<A);用希腊字母表示(如<β);用数字表示(如<1,<2)
3、 角的比较与运算
(1)角按大小分可分为锐角、直角、钝角、平角、周角。
(2)角平分线把一个角分成两个相等的角,角平分线是一条射线。
4、平行线
(1)如何画平行线?
(2)平行线的性质1:过直线外一点只有一条直线与已知直线平行;
平行线的性质2:两条直线都与第三条直线平行,那么这两条直线也平行。
5、垂直
(1) 如何画垂线?
(2) 垂线的性质1:过一点只有一条直线与已知直线垂直。
垂线的性质2:直线外一点与直线上任意一点的连线中,垂线段最短。
垂直的性质3:是点到直线的距离。
第五章 一元一次方程
1、 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数x,未知数x的指数都是1次,这样的方程叫做一元一次方程。
就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2、等式的性质:
(1). 等式两边加(或减)同一个数(或式子),结果仍相等。
(2) 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3、把等式一边的某项变号后移到另一边,叫做移项。(要移就得变)
4、常用体积公式:
长方形的体积=长X宽X 高 ;
正方形的体积=边长X边长X边长 ;
圆柱的体积=底面积X高 ;
圆锥的体积=底面积X高X1/3。
第六章生活中的数据
1、把一个大于10的数表示成1X10∩的形式(其中1≤a<10,n为正整数),就叫科学计数法。
(从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。)
2、扇形统计图的性质:各扇形占整个圆的百分比之和为1。
3、制作扇形统计图的步骤是什么?
4、各统计图的特点:
(1)扇形统计图能清楚地表示出部分与总体的关系;
(2)折线统计图能清楚地反映数据的趋势;
(3)条形统计图能清楚地表现出数据的多少
第七章 可能性
必然事件:事先能肯定它
确定事件{不可能事件:事先能肯定它一定
事件{不确定事件:事先无法肯定它
1、事情发生的可能性的大小:
机会大的不确定事件不一定发生,机会小的不确定事件也不一定不发生,机会大大小只能说明发生的程度不同。
2、要学会判断事情发生的可能性的大小。
C. 七年级上册数学重点,把所有重要的知识点列出来,要简洁点
初一数学知识点
第一章 有理数
1正数、负数、有理数、相反数、科学记数法、近似数
2数轴:用数轴来表示数
3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零
4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小 。
5有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加;
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值;
互为相反数的两数相加为零;
一个数加上零,仍得这个数。
6有理数的减法(把减法转换为加法)
减去一个数,等于加上这个数的相反数。
7有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同零相乘,都得零。
乘积是一的两个数互为倒数。
8有理数的除法(转换为乘法)
除以一个不为零的数,等于乘这个数的倒数。
9有理数的乘方
正数的任何次幂都是正数;
零的任何次幂都是负数;
负数的奇次幂是负数,负数的偶次幂是正数。
10混合运算顺序
(1) 先乘方,再乘除,最后加减;
(2) 同级运算,从左到右进行;
(3) 如果有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行。
第二章 整式的加减
1 整式:单项式和多项式的统称;
2整式的加减
(1) 合并同类项
(2) 去括号
第三章 一元一次方程
1 一元一次方程的认识
2 等式的性质
等式两边加上或减去同一个数或者式子,结果仍然相等;
等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
3 解一元一次方程
一般步骤:去分母、去括号、移项、合并同类项、系数化为一
第四章 图形认识初步
1 几何图形:平面图和立体图
2 点、线、面、体
3 直线、射线、线段
两点确定一条直线;
两点之间,线段最短
4 角
角的度量度数
角的比较和运算
补角和余角:等角的补角和余角相等
初一下册
第五章 相交线和平行线
1 相交线:对顶角相等
2 垂线
经过一点有且只有一条直线和已知直线垂直;
连接直线外一点与直线上各点的所有线段中,垂线段最短(垂线段最短)
3 平行线
平行公理:经过直线外一点,有且只有一条直线与已知直线平行;
若两直线都与第三条直线平行,那么这两条直线也相互平行;
判定:同位角相等,两直线平行;
内错角相等,两直线平行;
同旁内角互补,两直线平行。
性质:两直线平行,同位角相等,内错角相等,同旁内角互补。
4 命题:判断一件事情的语句
5 平移
第六章 平面直角坐标系
1 有序数对:(a,b)
2 平面直角坐标系、原点、横轴、纵轴、象限
3简单应用:用坐标表示位置;用坐标表示平移。
第七章 三角形
1 与三角形有关的边:
三角形的边、高、中线、角平分线、稳定性
2 与三角形有关的角
内角:三角形的内角和是180度
外角:三角形的一个外角等于与它不相邻的两个内角的和;
三角形的一个外角大于与它不相邻的任何一个内角。
2 多边形
内角:多边形的内角和为(n-2)*180;
外角:多边形的外角和为360度。
第八章 二元一次方程组
1 二元一次方程与二元一次方程组的介绍
2 二元一次方程组的解法
代入法 消元法(加减法)
3 二元一次方程组的实际应用
第九章 不等式和不等式组
1 不等式及其解集:含有不等关系号的式子;
2 不等式的性质
性质1 不等式的两边加减同一个数或式子,不等号的方向不变;
性质2 不等式两边乘或除以同一个正数,不等号的方向不变;
性质3 不等式的两边乘或除以同一个负数,不等号的方向改变。
3 一元一次不等式在实际问题中的应用
4 一元一次不等式组及其解法:大大取大;小小取小;大于大的,小于小的取两边,大于小的,小于大的去中间。
第十章 实数
1 平方根:正数有两个平方根,它们互为相反数;
零的平方根是零;
负数没有平方根;
正数算术平方根是正数;
零的算术平方根是零。
2 立方根:正数的立方根是正数;
负数的立方根是负数;
零的立方根是零。
3 实数:有理数和无理数的统称。无理数即是无限不循环小数。
我也不知道你要多简洁的,这算是比较全面的。。。
D. 初一上册数学有理数概念知识点
有理数包括正数,0,负数。有理数不包括无限不循环小数,正数包括无限不循环小数。
E. 七年级上册有理数、整式加减思维导图图形
一、有理数思维导图
F. 七年级数学上册知识点归纳
七年级(上)数学知识点归纳与总结
一、 知识梳理
知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、 -0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。
知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:
注:有限小数和无限循环小数都可看作分数。
知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。
知识点4:绝对值的概念:
(1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;
(2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。
注:任何一个数的绝对值均大于或等于0(即非负数).
知识点5:相反数的概念:
(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;
(2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。
知识点6:有理数大小的比较:
有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。
数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。
用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。
知识点7:有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
知识点8:有理数加法运算律:
加法交换律:两个数相加,交换加数的位置,和不变。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。
知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。
知识点11: 乘法与除法
1.乘法法则
2.除法法则
3.多个非零的数相乘除最后结果符号如何确定
知识点12:倒数
1. 倒数概念
2. 如何求一个数的倒数?(注意与相反数的区别)
知识点13:乘方
1. 乘方的概念,乘方的结果叫什么?
2. 认识底数,指数
3. 正数的任何次幂是_________,零的任何次幂________
负数的偶次幂是_________奇次幂是________
知识点14:混合计算
注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算.
知识点15:科学记数法
科学记数法的概念? 注意a的范围
(人教)
G. 七年级上册数学知识点归纳
七年级(上)数学知识点归纳与总结
一、 知识梳理
知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、 -0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。
知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:
注:有限小数和无限循环小数都可看作分数。
知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。
知识点4:绝对值的概念:
(1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;
(2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。
注:任何一个数的绝对值均大于或等于0(即非负数).
知识点5:相反数的概念:
(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;
(2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。
知识点6:有理数大小的比较:
有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。
数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。
用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。
知识点7:有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
知识点8:有理数加法运算律:
加法交换律:两个数相加,交换加数的位置,和不变。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。
知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。
知识点11: 乘法与除法
1.乘法法则
2.除法法则
3.多个非零的数相乘除最后结果符号如何确定
知识点12:倒数
1. 倒数概念
2. 如何求一个数的倒数?(注意与相反数的区别)
知识点13:乘方
1. 乘方的概念,乘方的结果叫什么?
2. 认识底数,指数
3. 正数的任何次幂是_________,零的任何次幂________
负数的偶次幂是_________奇次幂是________
知识点14:混合计算
注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算.
知识点15:科学记数法
科学记数法的概念? 注意a的范围一定要采纳我哦!