A. 初二数学的重难点有哪些
你好!通过对历年的中考进行综合分析发现,中考试卷中几乎50%以上的考点都会在初二的知识点中出现,而多数考试的重点难点和热点也会在初二中涉及,尤其是在数学上,得初二数学才能得中高考数学的天下。
(一)一次函数与反比例函数
初二我们接触的函数知识将贯穿初高中学习整个过程,是代数学习的重点内容,也是解决综合问题的“强力工具”,它的学习效果,直接影响到中考中中难档次题的解答。
1、采用类比的方法,积累学习函数的常规顺序,这将会使得你在函数繁杂的内容中找到方便记忆和调用知识的捷径。如一般函数的学习都会是按照以下顺序:剖析定义,表示方法,对应认识函数的图象与性质,从函数的观点再认识以前学习过的对应的方程和不等式(组),实际应用。
2、常见的考察热点难点集中在其中数形结合的这部分内容上,大家可以有意识的在老师的指导下进行题目的归纳压缩、方法优化。
其实整式、分式、二次根式的学习也是有其类似之处的,如果我们从类比的角度去学习,将得到事半功倍的效果。
(二)全等三角形
这部分内容相对比较灵活,定理逐渐增多,几何证明要求逐渐增加,很容易出现“虚假掌握”的情况(看解答都会,自己写总觉得“差不多”,实际上总达不到解题要求)。是特别体现几何学习中基础知识重要性和反思小结、解题策略重要性的地方。
1、重视基本格式。很多同学一开始不习惯几何推理的写法,其实有个很好的办法,定期重复书写一些重点题目,特别需要一字不差的落实。
2、收集常见的基本图。在处理几何问题时,如果能够很快找到“眼熟”的图形,就很快可以找到解题的突破点。
3、定期反思小结。几何问题中,题目会显得比代数问题杂乱,不能仅靠做大量的题来“应对”下一道“新题”,特别是以后到了四边形,内容更加复杂,做不过来所有的题,更别提初三复习中那么多的综合几何题了。因此,我们需要在早期养成定期反思小结的习惯。
B. 初二数学重点知识点有哪些
1.因式分解。
2.全等三角形。
3.四边形的判定和性质。
4.根式。
5.勾股定理。
6.分式
7.一次函数
C. 初二数学上学期知识点和典型例题总结
全等三角形
一、知识框架:
D. 初二数学的难点是什么如何解决这些难点呢
初二的数学难点主要会聚集在这么几个板块当中,首先就是几何部分,还有就是代数部分。想要获得一个不错的数学成绩,那么就一定要攻破这些难点,所以在学习新内容之前一定要理解文中所给出的知识点,也要理解三角形三边的关系,角平分线,中线,高的定义以及各种公式,把这些知识点全部都熟练于心识,再搭配做一些课外题,基本上就会考出一个不错的成绩。
想要学好数学,不能急于求成!
一个需要长时间积累的学科,如果你只是努力了一个星期或者是两个星期,就想考出一个好成绩,绝对是痴人说梦。慢慢积累,不断沉淀,相信时间会给你想要的一切!
E. 八年级上册数学每章每节的重点、难点
★怎样才能学好数学?
要回答这个似乎非常简单:把定理、公式都记住,勤思好问,多做几道题,不就行了。
事实上并非如此,比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会用;有的同学不重视知识、方法的产生过程,死记结论,生搬硬套;有的同学眼高手低,“想”和“说”都没问题,一到“写”和“算”,就漏洞百出,错误连篇;有的同学懒得做题,觉得做题太辛苦,太枯燥,负担太重;也有的同学题做了不少,辅导书也看了不少,成绩就是上不去,还有的同学复习不得力,学一段、丢一段。
究其原因有两个:一是学习态度问题:有的同学在学习上态度暧昧,说不清楚是进取还是退缩,是坚持还是放弃,是维持还是改进,他们勤奋学习的决心经常动摇,投入学习的精力也非常有限,思维通常也是被动的、浅层的和粗放的,学习成绩也总是徘徊不前。反之,有的同学学习目的明确,学习动力强劲,他们拥有坚韧不拔的意志、刻苦钻研的精神和自主学习的意识,他们总是想方设法解决学习中遇到的困难,主动向同学、老师求教,具有良好的自我认识能力和创造学习条件的能力。二是学习方法问题:有的同学根本就不琢磨学习方法,被动地跟着老师走,上课记笔记,下课写作业,机械应付,效果平平;有的同学今天试这种方法、明天试那种方法,“病急乱投医”,从不认真领会学习方法的实质,更不会将多种学习方法融入自己的日常学习环节,养成良好的学习习惯;更多的同学对学习方法存在片面的、甚至是错误的理解,比如,什么叫“会了”?是“听懂了”还是“能写了”,或者是“会讲了”?这种带有评价性的体验,对不同的学生来说,差异是非常大的,这种差异影响着学生的学习行为及其效果。
由此可见,正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。
一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击学生学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,如71-19=68,(3+3)2=81等,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。帮助学生认真分析运算出错的具体原因,是提高学生运算能力的有效手段之一。在面对复杂运算的时候,常常要注意以下两点:
①情绪稳定,算理明确,过程合理,速度均匀,结果准确;
②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
二、数学基础知识
理解和记忆数学基础知识是学好数学的前提。
★什么是理解?
按照建构主义的观点,理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。
理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
★什么是记忆?
一般地说,记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。
总之,分阶段地整理数学基础知识,并能在理解的基础上进行记忆,可以极大地促进数学的学习。
三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。
1、如何保证数量?
① 选准一本与教材同步的辅导书或练习册。
② 做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。
③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。
④每天保证1小时左右的练习时间。
2、如何保证质量?
①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。
②落实:不仅要落实思维过程,而且要落实解答过程。
③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。
四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。
总而言之,只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,我们就一定能早日进入数学学习的自由王国。
很多人在考试时总考不出自己的实际水平,拿不到理想的分数,究其原因,就是心理素质不过硬,考试时过于紧张的缘故,还有就是把考试的分数看得太重,所以才会导致考试失利,你要学会换一种方式来考虑问题,你要学会调整自己的心态,人们常说,考试考得三分是水平,七分是心理,过于地追求往往就会失去,就是这个缘故;不要把分数看得太重,即把考试当成一般的作业,理清自己的思路,认真对付每一道题,你就一定会考出好成绩的;你要学会超越自我,这句话的意思就是,心里不要总想着分数、总想着名次;只要我这次考试的成绩比我上一次考试的成绩有所提高,哪怕是只高一分,那我也是超越了自我;这也就是说,不与别人比成绩,就与自己比,这样你的心态就会平和许多,就会感到没有那么大的压力,学习与考试时就会感到轻松自如的;你试着按照这种方式来调整自己,你就会发现,在不经意中,你的成绩就会提高许多;
这就是我的经验之谈,妈妈教给我的道理,使我顺利地度过了中学阶段,也使我的成绩从高一班上的30多名到高三时就进入了年级的前10名,并且没有感到丝毫的压力,学得很轻松自如,你不妨也试一试,但愿我的经验能使你的压力有所减轻、成绩有所提高,那我也就感到欣慰了;
最祝你学习进步!
F. 初二上册数学重点难点
初二上册难点分析
三角形、全等三角形、轴对称、整式的乘除与因式分解、分式。
(1)三角形:是初中数学的基础,命题中的重点。试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目。
考查内容:
①三角形的性质和概念,三角形内角和定理,三边关系,以及三角形全等的性质与判定。
②三角形全等融入平行四边形的证明
③三角形运动,折叠,旋转,拼接形成的新数学问题
④等腰三角形的性质与判定,面积,周长等
⑤直角三角形的性质,勾股定理是重点
⑥三角形与圆的相关位置关系
⑦三角形中位线的性质应用
(2)全等三角形
(3)轴对称:图形的轴对称是中考题的新题型,热点题型。分值一般为3-4分,题型以填空,选择,作图为主,偶尔也会出现解答题。
考察内容:①轴对称和轴对称图形的性质判别。
②注意镜面对称与实际问题的解决。
(4)整式的乘除与因式分解:试题中分值约为4分,题型以选择,填空为主,难易度属于易。
近几年主要考察
①整式的概念和简单的运算,主要是同类项的概念和化简求值
②完全平方公式,平方差公司的几何意义
③利用提公因式发和公式法分解因式。
(5)分式:试题中分值约为6-8分,主要以填空,简答计算题型出现,难易度属于中。
近几年主要考察
①分式的概念,性质,意义
②分式的运算,化简求值。
③列分式方程解决实际问题。
G. 初二上一次函数期末必考题型,要重难点的要答案!,急需!!谢谢!!
第十四章 一次函数
一.复习内容:常量和变量;函数的概念;自变量取值范围的确定;函数值;函数图象及画法;函数图象的应用;函数的三种表示方法;正比例函数图象及性质;一次函数图象及性质;一次函数解析式的确定;一次函数的应用;用函数观点看方程、方程组、不等式.
二.复习重点:函数的概念;函数图象的应用;自变量取值范围的确定;一次函数图象及性质;一次函数解析式的确定;一次函数的应用.
三.复习难点:一次函数的综合应用;用函数观点看方程、方程组、不等式.
四.关于确定一次函数解析式的类型
① 定义型
例1. 已知函数 是一次函数,求其解析式.
② 点斜型
例2. 已知一次函数 的图象过点(2,-1),求这个函数的解析式.
变式问法:已知一次函数 ,当 时,y=-1,求这个函数的解析式.
③ 两点型
例3.已知某个一次函数的图象与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________.
④ 图象型
例4. 已知一次函数的图象如图所示,则该函数的解析式为______.
⑤ 斜截型 4题图
例5. 已知直线 与直线 平行,且它与y轴的交点到原点的距离为2,
则此直线的解析式为_______.
⑥ 平移型
例6. 把直线 向下平移2个单位得到的图象解析式为__________.
⑦ 实际应用型
例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量(升)与流出时间t(分钟)的函数关系式为__________.
⑧ 面积型
例8. 已知直线 与两坐标轴所围成的三角形面积等于4,则直线解析式为__________.
⑨ 对称型
若直线 与直线 关于
(1)x轴对称,则直线l的解析式为__________( )
(2)y轴对称,则直线l的解析式为__________( )
(3)直线y=x对称,则直线l的解析式为__________( )
(4)直线 对称,则直线l的解析式为___________( )
(5)原点对称,则直线l的解析式为____________( )
例9. 若直线l与直线 关于y轴对称,则直线l的解析式为______.
⑩ 开放型
例10. 已知函数的图象过点A(1,4),请写出满足条件的一个函数解析式.
例11(2009区统考).如果某函数具有下列两条性质:
(1)它的图象是经过原点的一条直线;(2) 值随 值的增大而增大.
请写出一个满足上述两个条件的函数的解析式 .
五.需要注意的几个问题:
1.关注实际问题背景,能够找出问题中相关变量之间的关系.
2.用函数分析解决实际问题,能借助函数图象、表格、式子等寻找变量之间的关系.
3.分段函数的问题,要特别注意相应的自变量变化区间.
4.注意渗透数形结合思想,关注知识之间的内在联系,用一次函数把一元一次方程、一元一次不等式和二元一次方程组统一起来认识.
六.巩固练习
一.基础知识回顾
(一)变量和函数
1.函数的概念
一般地,在一个 过程中,如果有两个变量x和y,并且对于 的
,那么我们就说x是自变量,y是 .
2.函数的三种表示方法
(1)用数学式子表示函数关系的方法叫做 ;
(2)通过列出自变量的值与对应的函数值的表格来表示函数关系的方法叫做 ;
(3)一般地,对于一个函数,如果把自变量与函数的 作为点的 ,在平面直角坐标系内 ,由这些点 ,叫做这个函数的图象.这种表示函数关系的方法叫做 .
(二)一次函数
1.一次函数的概念:一般地,形如 的函数,叫做一次函数.
特别地,当 时,即为 ,称y是x的 函数.
2.一次函数的图象和性质
(1)正比例函数的图象是 ;一次函数 的图象是一条经过点(0, )和点( ,0)的直线,一次函数 的图象也称为 .
(2)对于一次函数 及其图象:
一次函数
( )
示意图 函数和图象的性质
图象经过第 象限,y随x的增大而 ;
图象经过第 象限,y随x的增大而 ;
0
0
图象经过第一、二、四象限,y随x的增大而 ;
0
0
图象经过第一、三、四象限,y随x的增大而 ;
图象经过第 象限,y随x的增大而 .
图象经过第 象限,y随x的增大而 .
(3)平移关系:
当 时,直线 可以通过直线 向 平移 个单位长度得到;
当 时,直线 可以通过直线 向 平移 个单位长度得到.
当直线 时, , ;当直线 与 相交于y轴同一点时, , .
3.一次函数与一次方程(组)、一次不等式
(1)解一元一次方程 可以转化为:求直线 与x轴(直线 )交点的 坐标.
(2)解二元一次方程组 可以转化为:求直线 与 的交点的坐标.
(3)解不等式 可以转化为:观察直线 在直线 的 方部分所对应的 的取值范围;或者观察直线 在 上方部分所对应的 的取值范围.
二.分类补充习题
(一)函数的概念
1.根据流程右边图中的程序,当输入数值x为-2时,输出数值y为( ).
A.4 B.6 C.8 D.10
2.按如图所示的程序计算,若开始输入的x的值为48,我们发现第一次得到的结果为24,第2次得到的结果为12,……,请你探索第2009次得到的结果为_______________.
3.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量 与大气压强 成正比例关系.当 时, ,则 与 的函数关系式 .
4.周长为18的等腰三角形的腰长为x,底边长为y,求y与x之间的函数关系式及x的取值范围.
5.下列函数:① ,② ,③ ,④ ,⑤ 中,是一次函数的是 .
6(2011区统考).用长为4cm的 根火柴可以拼成如图1所示的 个边长都为4cm的平行四边形,还可以拼成如图2所示的 个边长都为4cm的平行四边形,那么用含 的代数式表示 ,得到______________________.
(二)求函数自变量的取值范围
7(2009区统考).函数 中,自变量x的取值范围是 .
8.函数 中,自变量 的取值范围是 .
9.函数 中自变量x的取值范围是 .
(三)函数图象的应用
10.如图,在四边形ABCD中,动点P从点A开始沿A—B—C—D的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是( ).
11.如图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶
过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间
的函数关系, 根据图中提供的信息,给出下列说法:
①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;
③汽车在整个行驶过程中的平均速度为 千米/小时;
④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.
其中正确的说法共有( ).
A.1个 B.2个 C.3个 D.4个
12.某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是( ).
A.45.2分钟 B.48分钟 C.46分钟 D.33分钟
13(2011区统考).王鹏和李明沿同一条路同时从学校出发
到图书馆查阅资料,学校与图书馆的路程是4千米.王鹏
骑自行车,李明步行.当王鹏从原路回到学校时,李明刚好
到达图书馆.图中折线O-A-B-C和线段OD分别表示两人离
学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,
请根据图象回答下列问题:
(1) 王鹏在图书馆查阅资料的时间为______分钟,王鹏返回学校的速度为 _________千米/分钟;
(2) 请求出李明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;
(3) 当王鹏与李明迎面相遇时,他们离学校的路程是多少千米?
(四)一次函数的图象和性质
14.如果点M在直线 上,则M点的坐标可以是( ).
A.(-1,0) B.(0,1) C.(1,0) D.(1,-1)
15.一次函数 中, 的值随 的增大而减小,则 的取值范围是().
A. B. C. D.
16.在平面直角坐标系中,直线 经过( ).
A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限
17.如果一次函数 的图象经过第一象限,且与 轴负半轴相交,那么( ).
A. , B. , C. , D. ,
18(2011区统考).当 时,函数 的图象不经过( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
19.一次函数 中,函数值y随x的增大而减小,且其图象不经过第一象限,则k的取值范围是( ).
A. B. C. D.
20(2011区统考).点A( )和B( )都在直线 上,则 与 的关系是( ).
A. B. C. D.
21(2011区统考).已知一次函数 的图象如图所示,当 时,
的取值范围是( ).
A. B. C. D.
22(2011区统考).已知直线 与直线 平行,且经过点(1,1),则直线 可以看作由直线 向_______平移_______个单位长度而得到.
(五)根据已知条件确定一次函数解析式
23.若正比例函数图象过点( , ),则该其解析式为 ___________.
24.如图,一次函数图象经过点 ,且与正比例函数 的图象交于点 ,
则该一次函数的表达式为( ).
A. B. C. D.
25.如图,将直线 向上平移1个单位,得到一个一次函数的图象,
那么这个一次函数的解析式是 .
26.将直线y=2x向右平移2个单位所得的直线的解析式是( ).
A.y=2x+2 B.y=2x-2 C.y=2(x-2) D.y=2(x+2)
27.已知一次函数 的图象与x轴、y轴围成的三角形面积为8,求一次函数的解析式.
28.已知直线 与x轴交于A点 ,与y轴交于B点.直线l经过原点,与线段AB交于C点,且把△ABO的面积分为1∶2两部分,求直线l的解析式.
29(2009区统考).如图,一张正方形的纸片,边长为14cm,剪去两个形状、大小完全相同的小矩形得到一个“日”字图案.已知剪下的两个矩形的周长总和为40,且“日”字图案中各笔画的宽度均不小于2cm.设每个小矩形的长为 cm,宽为 cm,则 与 的函数图象( ).
A. B. C. D.
(六)用函数观点看方程(组)与不等式
30.一次函数 的图象如图所示,当 时, 的取值范围是( ).
A. B. C. D.
31.已知函数 的图象如图所示,当 时, 的取值范围是( ).
A. B. C. D.
32.一次函数 与 的图象如图,则下列结论① ;② ;③当 时, 中,正确的个数是( ).
A.0 B.1 C.2 D.3
33.直线 与直线 在同一平面直角坐标系中的图象如图所示,则关于 的不等式 的解集为 .
32题图 33题图 34题图 35题图
34.如图,直线 经过A(-2,-1)和B(-3,0)两点,则不等式组 的解集为 .
35.如图所示的是函数 与 的图象,求方程组 的解关于x轴对称的点的坐标是 .
36(2009区统考).如图,已知直线 与直线 的交点的横坐标为1,根据图象有下列四个结论:① ;② ;③对于直线 上任意两点 、 ,若 ,则 ;
④ 是不等式 的解集.其中正确的结论是( ).
A.①② B.①③ C.①④ D.③④
(七)一次函数与几何有关问题
37.在平面直角坐标系中,直线AB与x轴正方向所夹的锐角为60度,A坐标为(2, 0),点B在x轴上方,设AB=a,那么点B的横坐标为( ).
A. B. C. D.
38.直线y=x+1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形, 则满足条件的点C最多有( ).
A.4个 B.5个 C.7个 D.8个
39.如图,点A、B、C在一次函数 的图象上,它们的横坐标依次为
-1、1、2,分别过这些点作x轴与y轴的垂线,则图中阴影部分面积的和是( ).
A. B. C. D.
40.如图1,在直角梯形 中,动点 从点 出发,沿 , 运动至点 停止.设点 运动的路程为 , 的面积为 ,如果 关于 的函数图象如图2所示,则 的面积是( ).
A.3 B.4 C.5 D.6
41.如图,直线AB:y= x+1分别与x轴、y轴交于
点A、点B,直线CD:y=x+b分别与x轴、y轴交于
点C、点D.直线AB与CD相交于点P,已知 =4,
则点P的坐标是( ).
A.(3, ) B.(8,5) C.(4,3) D.( , )
42.已知平面直角坐标直线 ( )与直线 ( )交于点( ).
(1)求直线 ( )的解析式;
(2)若直线 ( )与另一直线 交于点B,且点B的横坐标为 ,求△ABO的面积.
(八)一次函数的应用问题
43.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:
(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;
(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?
44.小强利用星期日参加了一次社会实践活动,他从果农处以每千克3元的价格购进若干千克草莓到市场上销售,在销售了10千克时,收入50元,余下的他每千克降价1元出售,全部售完,两次共收入70元.已知在降价前销售收入 (元)与销售重量 (千克)之间成正比例关系.请你根据以上信息解答下列问题:
(1)求降价前销售收入 (元)与售出草莓重量 (千克)之间的函数关系式;并画出其函数图象;
(2)小强共批发购进多少千克草莓?小强决定将这次卖草莓赚的钱全部捐给汶川地震灾区,那么小强的捐款为多少元?
45.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费 元;一月用水超过10吨的用户,10吨水仍按每吨 元收费,超过10吨的部分,按每吨 元( )收费.设一户居民月用水 吨,应收水费 元, 与 之间的函数关系如图所示.
(1)求 的值;某户居民上月用水8吨,应收水费多少元?
(2)求 的值,并写出当 时, 与 之间的函数关系式;
(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?
46.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为 ,两车之间的距离为 ,图中的折线表示 与 之间的函数关系.
根据图象进行以下探究:
信息读取:(1)甲、乙两地之间的距离为 km;
(2)请解释图中点 的实际意义;
图象理解:(3)求慢车和快车的速度;
(4)求线段 所表示的 与 之间的函数关系式,并写出自变量 的取值范围;
问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?
47.某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:
方案一:从纸箱厂定制购买,每个纸箱价格为4元;
方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.
(1)若需要这种规格的纸箱 个,请分别写出从纸箱厂购买纸箱的费用 (元)和蔬菜加工厂自己加工制作纸箱的费用 (元)关于 (个)的函数关系式;
(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.
48.某单位要印刷一批北京奥运会宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.
(1)如果该单位要印刷2400份,那么甲印刷厂的费用是,乙印刷厂费的用是 .
(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?
49.某学校计划租用6辆客车送一批师生参加一年一度的哈尔滨冰雕节,感受冰雕艺术的魅力.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车 辆,租车总费用为 元.
甲种客车 乙种客车
载客量(人/辆) 45 30
租金(元/辆) 280 200
(1)求出 (元)与 (辆)之间的函数关系式,指出自变量的取值范围;
(2)若该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否可以结余?若有结余,最多可结余多少元?
50.抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)
(1)若甲库运往A库粮食 吨,请写出将粮食运往A、B两库的总运费 (元)与 (吨)的函数关系式;
(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?
51.已知:在平面直角坐标系xoy中,点A(0,4)、点B和点C在x轴上(点B在点C的左边),点C在原点的右边,作BE⊥AC,垂足为E(点E在线段AC上,且点E与点A不重合),直线BE与y轴交于点D,若BD = AC.
(1)求点B的坐标; (2)设OC长为m,△BOD的面积为S,求S与m的函数关系式,并写出自变量m的取值范围.
52.已知:如图,等边三角形ABC中,AB = 2,点P是AB边上的一动点(点P可以与点A重合,但不与点B重合),过点P作PE⊥BC,垂足为E,过点E作EF⊥AC, 垂足为F,过点F作FQ⊥AB,垂足为Q.设BP = x, AQ = y.
(1)写出y与x之间的函数关系式; (2)当BP的长等于多少时,点P与点Q重合;
53.在平面直角坐标中,边长为2的正方形 的两顶点 、 分别在 轴、 轴的正半轴上,点 在原点.现将正方形 绕 点顺时针旋转,当 点第一次落在直线 上时停止旋转,旋转过程中, 边交直线 于点 , 边交 轴于点 .
(1)求边 在旋转过程中所扫过的面积;
(2)旋转过程中,当 和 平行时,求正方形 旋转
的度数;
(3)设 的周长为 ,在旋转正方形 的过程中,
值是否有变化?请证明你的结论.
-_-。sorry!复制下来有些乱,你可以给我你的邮箱,我给你发过去