当前位置:首页 » 基础知识 » 高等数学知识点和总结
扩展阅读
数学教资课程知识怎么学 2025-01-17 07:58:23
山东高中数学必备知识 2025-01-17 07:33:25

高等数学知识点和总结

发布时间: 2022-07-21 18:39:40

① 大一高数知识点归纳是什么

大一高数知识点如下:

1、泰勒公式是一个用函数在某点的信息描述其附近取值的公式。

2、若连续曲线y=f(x) 在 A(a,f(a)),B(b,f(b))两点间的每一点处都有不垂直于x轴的切线,则曲线在A,B间至少存在1点 ,使得该曲线在P点的切线与割线AB平行。

3、洛必达法则(L’Hôpital’s rule)是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。可以解决0/0型不定式极限和∞/∞型不定式极限以及其他拓展的极限问题。

4、函数的间断点:第一类间断点和第二类间断点,左、右极限都存在的是第一类间断点,第一类间断点有跳跃间断点和可去间断点。左右极限至少有一个不存在的间断点是第二类间断点。

5、极限的性质:局部有界性、唯一性、局部保号性、不等式性质(保序性)。

② 大一高等数学知识点有哪些

大一高等数学知识点有:

1、全体有理数组成的集合叫做有理数集,记作Q。

2、将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是域函数表格法。

3、我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。

4、函数的定义是如果当变量x在其变化围任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量×的变化围叫做这个函数的定义域。

5、单调有界的函数必有极限,有极限的函数不一定单调有界。

③ 没上过初中和高中现在却需要学习高等数学,该补什么知识点

如果说大家没有上过初中和高中的话,那么我们认识的知识就非常的有限了。而且没有上过初中和高中的话,那么很多的工作岗位都是不会去录取我们的。我们能够找到工作也是非常有限的,说的不好听一些,在如今这个社会当中,没有上过高中,就像文盲一样。而在这里,大家如果是想要去学习高等数学的话,小编也是建议大家最好是去找专业的老师来对自己进行一对一的培训。而且我们也是必须要认真地听讲,在课下一定要多花时间去巩固一下知识。

三、总结。

想要学习好高等数学,那么,我们必须要一步一步的去进行学习,千万不可随意或者是半路放弃,半路放弃的话,以前的努力就白费了。

④ 高等数学函数的知识点

主要的高等数学函数知识,涉及极限的主要有以下几个方面:

  • 可涉及极限计算的知识点有,连续性及间断点的分类(分段函数分段点的连续问题),可导(导数是由函数极限来定义的),渐近线,二重极限(多元微分学)。其中,二重极限难度较大。

  • 极限以间接考查或与其他知识点综合出题的比重很大,也可以直接出题,所以考查形式有多种。如已知极限求参数,无穷小的概念与比较,求间断点类型和个数,求渐近线方程或条数,求某一点处的连续性和可导性,求多元函数在某一点处极限是否存在,求含有极限的函数表达式,已知极限求极限等。

  • 函数极限计算的常规方法主要分四类:等价无穷小替换,洛必达法则,泰勒公式,导数定义。 数列极限涉及的常规方法主要有四类:夹逼定理,定积分的定义(主要是针对部分和求极限),转化为函数极限(归结原则),单调有界准则。

⑤ 求高等数学下知识点总结

⑥ 大一高数知识点有哪些

大一高数知识点有:

一、集合间的基本关系

1、“包含”关系—子集。注意:有两种可能(1)A是B的一部分;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA。

2、“相等”关系:A=B (5≥5,且5≤5,则5=5)。

实例:设A={x|x2-1=0} B={-1,1}“元素相同则两集合相等”。即:①任何一个集合是它本身的子集。AA②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)。③如果AB,BC,那么AC。④如果AB同时BA,那么A=B。

3、不含任何元素的集合叫做空集,记为Φ。

规定:空集是任何集合的子集,空集是任何非空集合的真子集。有n个元素的集合,含有2n个子集,2n-1个真子集。

二、集合及其表示

1、集合的含义:

“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示:

通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作dA。

有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N*或N+,整数集Z有理数集Q实数集R,集合的表示方法:列举法与描述法。

①列举法:{a,b,c……};②描述法:将集合中的元素的公共属性描述出来。如{xR| x-3>2},{x| x-3>2},{(x,y)|y=x2+1};③语言描述法:例:{不是直角三角形的三角形};

例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2};

A={(x,y)|y= x2+3x+2}与B={y|y= x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。


3、集合的三个特性

(1)无序性

指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

解:A=B

注意:该题有两组解。

(2)互异性

指集合中的元素不能重复,A={2,2}只能表示为{2}。

(3)确定性

集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

三、集合间的基本关系

1、子集,A包含于B,有两种可能

(1)A是B的一部分。

(2)A与B是同一集合,A=B,A、B两集合中元素都相同。

反之:集合A不包含于集合B,记作。

如:集合A={1,2,3 },B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为B=C。A是C的子集,同时A也是C的真子集。

2、真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA)。

3、不含任何元素的集合叫做空集,记为Φ。Φ是任何集合的子集。

4、有n个元素的集合,含有2n个子集,2n -1个真子集,含有2n -2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。

例:集合共有个子集。

练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。

解析:

集合A有3个元素,所以有23=8个子集。分别为:①不含任何元素的子集Φ;②含有1个元素的子集{1}{2}{3};③含有两个元素的子集{1,2}{1,3}{2,3};④含有三个元素的子集{1,2,3}。

集合B有4个元素,所以有24-2=14个非空真子集。具体的子集自己写出来。

⑦ 大一高数知识点归纳有哪些

大一高数知识点归纳:

1、函数的定义:函数是从量的角度对运动变化的抽象表述,是一种刻画运动变化中变化量相依关系的数学模型。设有两个变量x与y,如果对于变量x在实数集合D内的每一个值,变量y按照一定的法则都有唯一的值与之对应,那么就称x是自变量,y是x的函数,记作y=f(x),其中自变量x取值的集合D叫函数的定义域,函数值的集合叫做函数的值域。

2、解析法:即用解析式(或称数学式)表示函数。如y=2x+1, y=︱x︱,y=lg(x+1),y=sin3x等。便于对函数进行精确地计算和深入分析。

3、列表法:即用表格形式给出两个变量之间函数关系的方法。便于差的某一处的函数值。

4、反函数:如果在已给的函数y=f(x)中,把y看作自变量,x也是y的函数,则所确定的函数x=∮(y)叫做y=f(x)的反函数,记作x=f(y)或y= f(x)(以x表示自变量)。

5、集合的三个特性。集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。

6、隐函数相对于显函数而言的一种函数形式;所谓显函数,即直接用含自变量的式子表示的函数。

7、无穷小的性质有限个无穷小的代数和为无穷小;有限个无穷小的乘积为无穷小;有界函数与无穷小的乘积为无穷小。