当前位置:首页 » 基础知识 » 高一复习知识点大全
扩展阅读
下山的歌词有什么 2025-01-17 14:51:54
动漫兴趣行业如何发展 2025-01-17 14:32:58

高一复习知识点大全

发布时间: 2022-07-21 01:49:28

㈠ 高一语文复习知识点有哪些

古诗文默写和文言文字词理解 特别是文言文的一词多义 古今异义 虚词的翻译 省略句 倒装句 一堆乱七八糟的知识点 主要就这些必须看记忆和理解 其他就是自己长久以来的积累能帮你的

㈡ 高一物理必修一知识点归纳有哪些

高一物理必修一知识点归纳:

一、探究形变与弹力的关系。

弹性形变(撤去使物体发生形变的外力后能恢复原来形状的物体的形变)范性形变(撤去使物体发生形变的外力后不能恢复原来形状的物体的形变)

弹性限度:若物体形变过大,超过一定限度,撤去外力后,无法恢复原来的形状,这个限度叫弹性限度。

二、探究摩擦力。

滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。

说明:摩擦力的产生是由于物体表面不光滑造成的。

三、力的合成与分解。

(1)若处于平衡状态的物体仅受两个力作用,这两个力一定大小相等、方向相反、作用在一条直线上,即二力平衡。

(2)若处于平衡状态的物体受三个力作用,则这三个力中的任意两个力的合力一定与另一个力大小相等、方向相反、作用在一条直线上。

(3)若处于平衡状态的物体受到三个或三个以上的力的作用,则宜用正交分解法处理,此时的平衡方程可写成。

①确定研究对象。

②分析受力情况。

③建立适当坐标。

④列出平衡方程。

四、共点力的平衡条件。

1.共点力:物体受到的各力的作用线或作用线的延长线能相交于一点的力。

2.平衡状态:在共点力的作用下,物体保持静止或匀速直线运动的状态。

说明:这里的静止需要二个条件,一是物体受到的合外力为零,二是物体的速度为零,仅速度为零时物体不一定处于静止状态,如物体做竖直上抛运动达到点时刻,物体速度为零,但物体不是处于静止状态,因为物体受到的合外力不为零。

3.共点力作用下物体的平衡条件:合力为零,即0。

说明。

①三力汇交原理:当物体受到三个非平行的共点力作用而平衡时,这三个力必交于一点。

②物体受到N个共点力作用而处于平衡状态时,取出其中的一个力,则这个力必与剩下的(N-1)个力的合力等大反向。

③若采用正交分解法求平衡问题,则其平衡条件为:FX合=0,FY合=0。

④有固定转动轴的物体的平衡条件。

五、作用力与反作用力。

学过物理学的人都会知道牛顿第三定律,此定律主要说明了作用力和反作用的关系。在对一个物体用力的时候同时会受到另一个物体的反作用力,这对力大小相等,方向相反,并且保持在一条直线上。

㈢ 高一数学知识点有哪些

高一数学知识点:

一、集合有关概念。

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1)元素的确定性。

2)元素的互异性。

3)元素的无序性。

说明:

(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}。

1)、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}。

2)、集合的表示方法:列举法与描述法。

二、集合间的基本关系。

1、“包含”关系—子集。

注意:有两种可能。

(1)A是B的一部分。

(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA。

2、“相等”关系(5≥5,且5≤5,则5=5)。

实例:设A={x|x2—1=0}B={—1,1}“元素相同”。

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B。

①任何一个集合是它本身的子集。AíA。

②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)。

③如果AíB,BíC,那么AíC。

④如果AíB同时BíA那么A=B。

3、不含任何元素的集合叫做空集,记为Φ。

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的运算。

1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。

记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}。

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}。

3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A。

㈣ 高一的知识点有哪些

高一的知识点就是老师上课的时候强调的重点内容可以用笔记本,把它整理下来作为的知识点来掌握。

㈤ 数学高一知识点归纳有哪些

数学高一知识点归纳有:

1、集合是某些指定的对象集在一起就成为一个集合。其中每一个对象叫元素。

2、集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

3、集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件。

4、集合的表示方法常用的有列举法、描述法和图文法。

5、集合的分类:有限集,无限集,空集。

㈥ 高一数学重要知识点复习提纲

高一数学知识总结必修一一、集合 一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。u 注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x�0�2R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集 含有有限个元素的集合(2)无限集 含有无限个元素的集合(3)空集 不含任何元素的集合例:{x|x<sup>2</sup>=-5}</p><p> </p><p>二、集合间的基本关系</p><p>1.“包含”关系—子集</p><p>注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。</p><p>反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A</p><p>2.“相等”关系:A=B (5≥5,且5≤5,则5=5)</p><p>实例:设 A={x|x<sup>2</sup>-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。A�0�1A②真子集:如果A�0�1B,且A�0�1 B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A�0�1B, B�0�1C ,那么 A�0�1C④ 如果A�0�1B 同时 B�0�1A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。u 有n个元素的集合,含有2n个子集,2n-1个真子集 二、函数1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法5、二次函数根的问题——一题多解&指数函数y=a^xa^a*a^b=a^a+b(a>0,a、b属于Q)(a^a)^b=a^ab(a>0,a、b属于Q)(ab)^a=a^a*b^a(a>0,a、b属于Q)指数函数对称规律:1、函数y=a^x与y=a^-x关于y轴对称2、函数y=a^x与y=-a^x关于x轴对称3、函数y=a^x与y=-a^-x关于坐标原点对称&对数函数y=loga^x 如果 ,且 , , ,那么:1 · + ;2 - ;3 .注意:换底公式 ( ,且 ; ,且 ; ).幂函数y=x^a(a属于R) 1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴. 方程的根与函数的零点1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点.3、函数零点的求法:1 (代数法)求方程 的实数根;2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数 .(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.(2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.三、平面向量 向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为 的向量.单位向量:长度等于 个单位的向量.相等向量:长度相等且方向相同的向量&向量的运算
加法运算
AB+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。

减法运算
与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。
设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ μ)a = λa μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积
已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。
a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。四、三角函数1、善于用“1“巧解题2、三角问题的非三角化解题策略3、三角函数有界性求最值解题方法4、三角函数向量综合题例析5、三角函数中的数学思想方法 15、正弦函数、余弦函数和正切函数的图象与性质:函数性质 图象定义域值域最值当 时, ;当 时, .当 时, ;当 时, .既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在 上是增函数;在上是减函数.在 上是增函数;在 上是减函数.在 上是增函数.对称性对称中心 对称轴 对称中心 对称轴 对称中心 无对称轴 必修四角 的顶点与原点重合,角的始边与 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在 轴上的角的集合为 终边在 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角 终边相同的角的集合为 4、已知 是第几象限角,确定 所在象限的方法:先把各象限均分 等份,再从 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则 原来是第几象限对应的标号即为 终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做 弧度.口诀:奇变偶不变,符号看象限. 公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα

公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα

公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα

公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα

公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα

sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα

sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα

(以上k∈Z)

其他三角函数知识:
同角三角函数基本关系

⒈同角三角函数的基本关系式
倒数关系:
tanα �6�1cotα=1
sinα �6�1cscα=1
cosα �6�1secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)

两角和差公式
⒉两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ
tan(α+β)=——————
1-tanα �6�1tanβ

tanα-tanβ
tan(α-β)=——————
1+tanα �6�1tanβ

倍角公式

⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

2tanα
tan2α=—————
1-tan^2(α)

半角公式

⒋半角的正弦、余弦和正切公式(降幂扩角公式)

1-cosα
sin^2(α/2)=—————
2

1+cosα
cos^2(α/2)=—————
2

1-cosα
tan^2(α/2)=—————
1+cosα

万能公式

⒌万能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)

1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)

2tan(α/2)
tanα=——————
1-tan^2(α/2)

和差化积公式

⒎三角函数的和差化积公式

α+β α-β
sinα+sinβ=2sin—----�6�1cos—---
2 2

α+β α-β
sinα-sinβ=2cos—----�6�1sin—----
2 2

α+β α-β
cosα+cosβ=2cos—-----�6�1cos—-----
2 2

α+β α-β
cosα-cosβ=-2sin—-----�6�1sin—-----
2 2

积化和差公式

⒏三角函数的积化和差公式
sinα �6�1cosβ=0.5[sin(α+β)+sin(α-β)]
cosα �6�1sinβ=0.5[sin(α+β)-sin(α-β)]
cosα �6�1cosβ=0.5[cos(α+β)+cos(α-β)]
sinα �6�1sinβ=- 0.5[cos(α+β)-cos(α-β)]