当前位置:首页 » 基础知识 » 青岛数学九上知识点
扩展阅读
同学外貌特点怎么写 2024-11-07 07:44:43
星期三更新的有什么动漫 2024-11-07 07:38:56

青岛数学九上知识点

发布时间: 2022-07-20 13:34:22

㈠ 九年级上册数学旋转的知识点

旋转关注:旋转中心与旋转角度;
旋转性质:
①旋转前后两个图形全等;
②旋转前后对应点到旋转中心的距离相等;
③对应点旋转的角度相等,都等于旋转角。
注意点:旋转有方向:顺时针或逆时针。

㈡ 青岛版初中数学知识点,要所有的!

榨足行眨春除话掠北巡

㈢ 青岛版小学数学第九册“大数知多少——万以上数的认识”单元信息窗教材分析与教学建议

本单元是在学生认识和掌握了万以内数的基础上,进一步学习认识万以上的数。这是认数范围的又一次扩展,是小学阶段对整数认识的终结,对发展学生的数感,培养学生的估计意识具有重要的意义。本单元的主要教学内容有:万以上数的读写;万以上数大小的比较;用“万”或“亿”作单位改写整万、整亿数;求一个数的近似数;数字编码。信息窗解读信息窗1图书知多少一、情境图解读本情境图上半部分呈现的是清华大学附属中学图书馆的内外景观,小学生的话表述了该图书馆的藏书册数;下半部分呈现的是国内外四家知名图书馆截至2002年底的藏书册数。这些信息启发学生提出“十万是多少”“大数怎样读”等数学问题。二、知识点简析本信息窗共安排了两个红点和一个绿点,包含的知识点有:(1)让学生经历在现实情境中运用万以上的数表示事物的过程,感受大数的意义,发展数感。(2)结合“十万是多少”这一问题,引入对计数单位和十进制计数法的学习。(3)结合具体情境,学习与探索万以上数的读法。三、教学建议1.引导学生在现实情境中建立数的概念、发展数感。

㈣ 九年级上学期数学知识点

九年级上学期数学期末复习计划

本次期末考试一共考查九上全书和九下一二章的内容,这些内容是:证明(二)、证明(三)、一元二次方程,视图与投影,反比例函数,频数与频率,三角函数,二次函数。
我的复习计划大致分三轮:
第一轮:将各章内容分类划分,细化各章知识点,采取学生先自主复习,作出复习手抄报,让学生总结各章重点及难点,以及本章中的重点例题和练习题,再利用上课时间对学生的总结全面细化,弥补其不足之处,提高复习效率,达到学生看见题目能够自己分析出考查哪章节知识点的目的。主要将各章内容分成以下几部分:
第一部分:三角函数;
第二部分:二次函数,反比例函数,一元二次方程;
第三部分:频数与频率
第四部分:证明(二),证明(三),视图与投影
其中一、二部分为重点,三四部分在习题中同时展开复习,大致需要一个星期时间。
第二轮:通过这次考试的题型有针对性地复习,利用教研活动各校所出模拟试题,整理分类,分为以下专题展开:
一、填空选择专题,全面考察各章细小知识点;
二、几何及三角函数专题;
三、二次函数及动点专题。
由于这些类型的题目是学生感到有难度,且在考试中最易丢分的题目,因此特别针对这些内容作专题训练,以强化学生的问题分析能力。大致四天左右时间。
第三轮:综合检测,选取三至四份质量比较高的综合试题,对学生进行实战练习,全面考查复习成果,讲评中注意精讲,尽量让学生自己解决问题。

㈤ 数学初三知识点归纳有哪些

数学初三知识点如下:

1、含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。

2、同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

3、使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

4、若已知函数图像与x轴的两个交点坐标,可设为交点式。

5、一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。

㈥ 初三上册数学知识点归纳

初三数学知识点 第一章 二次根式 1 二次根式:形如a
(0a)的式子为二次根式;
性质:a
(0a)是一个非负数;

02
aaa


02
aaa

2 二次根式的乘除: 0,0

baabba;

0,0
bab
ab
a。
3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。
4 海伦-秦九韶公式:)
)()((cpbpppS
,S是三角形的面积,
p为2
c
bap

第二章 一元二次方程
1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。
2 一元二次方程的解法
配方法:将方程的一边配成完全平方式,然后两边开方; 公式法:a
acbbx242



因式分解法:左边是两个因式的乘积,右边为零。 3 一元二次方程在实际问题中的应用
4 韦达定理:设21,xx是方程02cbxax的两个根,那么有

初三全科目课件教案习题汇总语文数学英语物理化学

a
cxxa
bxx


2121
,
第三章 旋转 1 图形的旋转
旋转:一个图形绕某一点转动一个角度的图形变换 性质:对应点到旋转中心的距离相等;
对应点与旋转中心所连的线段的夹角等于旋转角 旋转前后的图形全等。
2 中心对称:一个图形绕一个点旋转180度,和另一个图
形重合,则两个图形关于这个点中心对称;
中心对称图形:一个图形绕某一点旋转180度后得到的
图形能够和原来的图形重合,则说这个图形是中心对称图形;
3 关于原点对称的点的坐标 第四章 圆
1 圆、圆心、半径、直径、圆弧、弦、半圆的定义 2 垂直于弦的直径
圆是轴对称图形,任何一条直径所在的直线都是它
的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧; 平分弦的直径垂直弦,并且平分弦所对的两条弧。 3 弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所

对的弦也相等。
4 圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等
于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角
所对的弦是直径。
5 点和圆的位置关系 点在
rd
点在圆上 d=r 点在圆内 d<r
定理:不在同一条直线上的三个点确定一个圆。 三角形的外接圆:经过三角形的三个顶点的圆,外接圆的
圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。
6直线和圆的位置关系 相交 d<r 相切 d=r 相离 d>r
切线的性质定理:圆的切线垂直于过切点的半径; 切线的判定定理:经过圆的外端并且垂直于这条半径的直
线是圆的切线;
切线长定理:从圆外一点引圆的两条切线,它们的切线长

相等,这一点和圆心的连线平分两条切线的夹角。
三角形的内切圆:和三角形各边都相切的圆为它的内切圆,
圆心是三角形的三条角平分线的交点,为三角形的内心。
7 圆和圆的位置关系
外离 d>R+r 外切 d=R+r 相交 R-r<d<R+r 内切 d=R-r 内含 d<R-r 8 正多边形和圆
正多边形的中心:外接圆的圆心 正多边形的半径:外接圆的半径 正多边形的中心角:没边所对的圆心角 正多边形的边心距:中心到一边的距离 9 弧长和扇形面积 弧长 180
rnl

扇形面积:360
2
rnS
10 圆锥的侧面积和全面积 侧面积: 全面积
11 (附加)相交弦定理、切割线定理

第五章 概率初步
1 概率意义:在大量重复试验中,事件A发生的频率nm
稳定在
某个常数p附近,则常数p叫做事件A的概率。
2 用列举法求概率
一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=
n
m

㈦ 青岛版九年级上册数学

列式
设十位数为x,个位数为y
1.x+y=5
2.(10x+y)(10y+x)=736
两式联立解方程 自己算一下。
自己研究研究。10x+y和10y+x是这个两位数和十位数字与个位数字互换后得到的两位数的表示方法。

这个是初三不太难的题哦
给分

㈧ 九年级上数学

九年级上册数学期末基础知识复习
二次根式
知识点1.二次根式 重点:掌握二次根式的概念。 难点:二次根式有意义的条件
式子

(a≥0)叫做二次根式.
知识点 2.最简二次根式
重点:掌握最简二次根式的条件[来源:学.难点:正确分清是否为最简二次根式
同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式.
知识点3.同类二次根式
重点:掌握同类二次根式的概念 难点:正确分清是否为同类二次根式
几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式.
知识点4.二次根式的性质
重点:掌握二次根式的性质 难点:理解和熟练运用二次根式的性质
①(
)2=a(a≥0);

=│a│=

知识点5.分母有理化及有理化因式

重点:掌握分母有理化及有理化因式的概念
难点:熟练进行分母有理化,求有理化因式
把分母中的根号化去,叫做分母有理化;两个含有二次根式的代数式相乘,若它们的积不含二次根式,则称这两个代数式互为有理化因式.
例观察下列分母有理化的计算:
,从计算结果中找出规律,并利用这一规律计算:

=_____________
解题思路:

知识点6.二次根式的运算
重点:掌握二次根式的运算法则 难点:熟练进行二次根式的运算
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.

(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.

=
·
(a≥0,b≥0);
(b≥0,a>0).
(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
最新考题中考要求及命题趋势1、掌握二次根式的有关知识,包括概念,性质、运算等;2、熟练地进行二次根式的运算

一 元 二 次 方 程
一、知识结构:
一元二次方程:概念、解与解法、实际应用、根与系数的关系。
二、考点精析
考点一、概念(1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。
(2)一般表达式:

⑶难点:如何理解 “未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;
③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
例2、方程
是关于x的一元二次方程,则m的值为 。
考点二、方程的解
⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值;
典型例题:例1、已知
的值为2,则
的值为

考点三、解法
⑴方法:①直接开方法;②因式分解法;③配方法;④公式法 ⑵关键点:降次
类型一、直接开方法:

※※对于

等形式均适用直接开方法
典型例题:例1、解方程:

=0;

例2、若
,则x的值为 。
类型二、因式分解法:

※方程特点: 左边可以分解为两个一次因式的积,右边为“0”,

※方程形式:如
,


典型例题:例1、
的根为( )A .
B .
C .
D.

例2、若
,则4x+y的值为 。
类型三、配方法

※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
典型例题:试用配方法说明
的值恒大于0。
类型四、公式法⑴条件:

⑵公式:
,

典型例题: 例1、选择适当方法解下列方程:




类型五、 “降次思想”的应用
⑴求代数式的值; ⑵解二元二次方程组。
典型例题:已知
,求代数式
的值。
考点四、根的判别式

根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。
典型例题:例1、若关于
的方程
有两个不相等的实数根,则k的取值范围是 。
考点五、方程类问题中的“分类讨论”
典型例题: 例1、讨论关于x的方程
根的情况。
考点六、应用解答题
⑴“碰面”问题;⑵“复利率”问题;⑶“几何”问题;
⑷“最值”型问题;⑸“图表”类问题
典型例题:
1、将一条长20cm的铁丝剪成两段,并以每一段铁丝的长度为周长作成一个正方形。
(1)要使这两个正方形的面积之和等于17cm2,那么这两段铁丝的长度分别为多少?
考点七、根与系数的关系
⑴前提:对于
而言,当满足①
、②
时,
才能用韦达定理。
⑵主要内容:

⑶应用:整体代入求值。
典型例题:例1、已知关于x的方程
有两个不相等的实数根

(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?若存在,求出k的值;若不存在,请说明理由。

旋转

知识网络图表

图案设计

识别及应用

关于原点对称的点的坐标

中心对称

中心对称图形

图形旋转

平移及性质

平移及性质

旋转及性质

(1)
中心对称:把一个图形绕某一点旋转
,如果能与另一个图形重合.这个点叫对称中心,这两个图形中的对应点关于这一点对称.

(2)
关于旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前后的图形全等。

第1题. 下列是中心对称图形的有()

(1)线段;(2)角;(3)等边三角形;(4)正方形;(5)平行四边形;(6)矩形;(7)等腰梯形.

A.2个 B.3个 C.4个 D.5个
答案:C.

第5题. 在线段、射线、两条相交直线、五角星中,是中心对称图形的个数为()

A.1个 B.2个 C.3个 D.4个 答案:B.



一、知识点

1、与圆有关的角——圆心角、圆周角

(1)图中的圆心角 ∠ AOB ;圆周角∠
ACB ;

(2)如图,已知∠AOB=50度,则∠ACB= 25
度;

(3)在上图中,若AB是圆O的直径,则∠AOB= 180
度;则∠ACB= 90
度;

2、圆的对称性:

(1)圆是轴对称图形,其对称轴是任意一条
过圆心 的直线;

圆是中心对称图形,对称中心为 圆心 .

(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.

如图,∵CD是圆O的直径,CD⊥AB于E∴ = , =

3、点和圆的位置关系有三种:点在圆 ,点在圆 ,点在圆 ;

4、直线和圆的位置关系有三种:相 、相 、相 .

5、圆与圆的位置关系:

6、切线性质:

例4:(1)如图,PA是⊙O的切线,点A是切点,则∠PAO= 度

(2)如图,PA、PB是⊙O的切线,点A、B是切点,

则 = ,∠ =∠ ;

7、圆中的有关计算

(1)弧长的计算公式:

例5:若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少?

解:因为扇形的弧长=
所以
=
= (答案保留π)

(2)扇形的面积:

例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少?

解:因为扇形的面积S=
所以S=
= (答案保留π)

②若扇形的弧长为12πcm,半径为6㎝,则这个扇形的面积是多少?

解:因为扇形的面积S=

所以S= =

( 3)圆锥:

例7:圆锥的母线长为5cm,半径为4cm,则圆锥的侧面积是多少?

解:∵圆锥的侧面展开图是 形,展开图的弧长等于

∴圆锥的侧面积=

概率初步

【知识梳理】

1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中,

① 必然事件发生的概率为1,即P(必然事件)=1;

② 不可能事件发生的概率为0,即P(不可能事件)=0;

③ 如果A为不确定事件,那么0<P(A)<1

2.随机事件发生的可能性(概率)的计算方法:

① 理论计算又分为如下两种情况:

第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;

第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:对游戏是否公平的计算。

② 实验估算又分为如下两种情况:

第一种:利用实验的方法进行概率估算。要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率。

第二种:利用模拟实验的方法进行概率估算。如,利用计算器产生随机数来模拟实验。

综上所述,目前掌握的有关于概率模型大致分为三类;第一类问题没有理论概率,只能借助实验模拟获得其估计值;第二类问题虽然存在理论概率但目前尚不可求,只能借助实验模拟获得其估计值;第三类问题则是简单的古典概型,理论上容易求出其概率。