‘壹’ 初中数学
初中数学知识点归纳.
有理数的加法运算
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算
减正等于加负,减负等于加正。
有理数的乘法运算符号法则
同号得正异号负,一项为零积是零。
合并同类项
说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则
去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程
已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式
两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式
二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程
先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程
先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法
和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解
两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解
一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】 一提(提公因式)二套(套公式)
因式分解
一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
二次三项式的因式分解
先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
比和比例
两数相除也叫比,两比相等叫比例。
外项积等内项积,等积可化八比例。
分别交换内外项,统统都要叫更比。
同时交换内外项,便要称其为反比。
前后项和比后项,比值不变叫合比。
前后项差比后项,组成比例是分比。
两项和比两项差,比值相等合分比。
前项和比后项和,比值不变叫等比。
解比例
外项积等内项积,列出方程并解之。
求比值
由已知去求比值,多种途径可利用。
活用比例七性质,变量替换也走红。
消元也是好办法,殊途同归会变通。
正比例与反比例
商定变量成正比,积定变量成反比。
正比例与反比例
变化过程商一定,两个变量成正比。
变化过程积一定,两个变量成反比。
判断四数成比例
四数是否成比例,递增递减先排序。
两端积等中间积,四数一定成比例。
判断四式成比例
四式是否成比例,生或降幂先排序。
两端积等中间积,四式便可成比例。
比例中项
成比例的四项中,外项相同会遇到。
有时内项会相同,比例中项少不了。
比例中项很重要,多种场合会碰到。
成比例的四项中,外项相同有不少。
有时内项会相同,比例中项出现了。
同数平方等异积,比例中项无处逃。
根式与无理式
表示方根代数式,都可称其为根式。
根式异于无理式,被开方式无限制。
被开方式有字母,才能称为无理式。
无理式都是根式,区分它们有标志。
被开方式有字母,又可称为无理式。
求定义域
求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次幂。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次幂。
限制条件不唯一,不等式组求解集。
解一元一次不等式
先去分母再括号,移项合并同类项。
系数化“1”有讲究,同乘除负要变向。
先去分母再括号,移项别忘要变号。
同类各项去合并,系数化“1”注意了。
同乘除正无防碍,同乘除负也变号。
解一元一次不等式组
大于头来小于尾,大小不一中间找。
大大小小没有解,四种情况全来了。
同向取两边,异向取中间。
中间无元素,无解便出现。
幼儿园小鬼当家,(同小相对取较小)
敬老院以老为荣,(同大就要取较大)
军营里没老没少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
解一元二次不等式
首先化成一般式,构造函数第二站。
判别式值若非负,曲线横轴有交点。
A正开口它向上,大于零则取两边。
代数式若小于零,解集交点数之间。
方程若无实数根,口上大零解为全。
小于零将没有解,开口向下正相反。
用平方差公式因式分解
异号两个平方项,因式分解有办法。
两底和乘两底差,分解结果就是它。
用完全平方公式因式分解
两平方项在两端,底积2倍在中部。
同正两底和平方,全负和方相反数。
分成两底差平方,方正倍积要为负。
两边为负中间正,底差平方相反数。
一平方又一平方,底积2倍在中路。
三正两底和平方,全负和方相反数。
分成两底差平方,两端为正倍积负。
两边若负中间正,底差平方相反数。
用公式法解一元二次方程
要用公式解方程,首先化成一般式。
调整系数随其后,使其成为最简比。
确定参数abc,计算方程判别式。
判别式值与零比,有无实根便得知。
有实根可套公式,没有实根要告之。
用常规配方法解一元二次方程
左未右已先分离,二系化“1”是其次。
一系折半再平方,两边同加没问题。
左边分解右合并,直接开方去解题。
该种解法叫配方,解方程时多练习。
用间接配方法解一元二次方程
已知未知先分离,因式分解是其次。
调整系数等互反,和差积套恒等式。
完全平方等常数,间接配方显优势
【注】 恒等式
解一元二次方程
方程没有一次项,直接开方最理想。
如果缺少常数项,因式分解没商量。
b、c相等都为零,等根是零不要忘。
b、c同时不为零,因式分解或配方,
也可直接套公式,因题而异择良方。
正比例函数的鉴别
判断正比例函数,检验当分两步走。
一量表示另一量,
初中数学口诀
上海市同洲模范学校 宋立峰
有理数的加法运算
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算
减正等于加负,减负等于加正。
有理数的乘法运算符号法则
同号得正异号负,一项为零积是零。
合并同类项
说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则
去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程
已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式
两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式
二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程
先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程
先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法
和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解
两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解
一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】 一提(提公因式)二套(套公式)
因式分解
一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
二次三项式的因式分解
先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
比和比例
两数相除也叫比,两比相等叫比例。
外项积等内项积,等积可化八比例。
分别交换内外项,统统都要叫更比。
同时交换内外项,便要称其为反比。
前后项和比后项,比值不变叫合比。
前后项差比后项,组成比例是分比。
两项和比两项差,比值相等合分比。
前项和比后项和,比值不变叫等比。
解比例
外项积等内项积,列出方程并解之。
求比值
由已知去求比值,多种途径可利用。
活用比例七性质,变量替换也走红。
消元也是好办法,殊途同归会变通。
正比例与反比例
商定变量成正比,积定变量成反比。
正比例与反比例
变化过程商一定,两个变量成正比。
变化过程积一定,两个变量成反比。
判断四数成比例
四数是否成比例,递增递减先排序。
两端积等中间积,四数一定成比例。
判断四式成比例
四式是否成比例,生或降幂先排序。
两端积等中间积,四式便可成比例。
比例中项
成比例的四项中,外项相同会遇到。
有时内项会相同,比例中项少不了。
比例中项很重要,多种场合会碰到。
成比例的四项中,外项相同有不少。
有时内项会相同,比例中项出现了。
同数平方等异积,比例中项无处逃。
根式与无理式
表示方根代数式,都可称其为根式。
根式异于无理式,被开方式无限制。
被开方式有字母,才能称为无理式。
无理式都是根式,区分它们有标志。
被开方式有字母,又可称为无理式。
求定义域
求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次幂。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次幂。
限制条件不唯一,不等式组求解集。
解一元一次不等式
先去分母再括号,移项合并同类项。
系数化“1”有讲究,同乘除负要变向。
先去分母再括号,移项别忘要变号。
同类各项去合并,系数化“1”注意了。
同乘除正无防碍,同乘除负也变号。
解一元一次不等式组
大于头来小于尾,大小不一中间找。
大大小小没有解,四种情况全来了。
同向取两边,异向取中间。
中间无元素,无解便出现。
幼儿园小鬼当家,(同小相对取较小)
敬老院以老为荣,(同大就要取较大)
军营里没老没少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
解一元二次不等式
首先化成一般式,构造函数第二站。
判别式值若非负,曲线横轴有交点。
A正开口它向上,大于零则取两边。
代数式若小于零,解集交点数之间。
方程若无实数根,口上大零解为全。
小于零将没有解,开口向下正相反。
用平方差公式因式分解
异号两个平方项,因式分解有办法。
两底和乘两底差,分解结果就是它。
用完全平方公式因式分解
两平方项在两端,底积2倍在中部。
同正两底和平方,全负和方相反数。
分成两底差平方,方正倍积要为负。
两边为负中间正,底差平方相反数。
一平方又一平方,底积2倍在中路。
三正两底和平方,全负和方相反数。
分成两底差平方,两端为正倍积负。
两边若负中间正,底差平方相反数。
用公式法解一元二次方程
要用公式解方程,首先化成一般式。
调整系数随其后,使其成为最简比。
确定参数abc,计算方程判别式。
判别式值与零比,有无实根便得知。
有实根可套公式,没有实根要告之。
用常规配方法解一元二次方程
左未右已先分离,二系化“1”是其次。
一系折半再平方,两边同加没问题。
左边分解右合并,直接开方去解题。
该种解法叫配方,解方程时多练习。
用间接配方法解一元二次方程
已知未知先分离,因式分解是其次。
调整系数等互反,和差积套恒等式。
完全平方等常数,间接配方显优势
【注】 恒等式
解一元二次方程
方程没有一次项,直接开方最理想。
如果缺少常数项,因式分解没商量。
b、c相等都为零,等根是零不要忘。
b、c同时不为零,因式分解或配方,
也可直接套公式,因题而异择良方。
正比例函数的鉴别
判断正比例函数,检验当分两步走。
一量表示另一量, 是与否。
若有还要看取值,全体实数都要有。
正比例函数是否,辨别需分两步走。
一量表示另一量, 有没有。
若有再去看取值,全体实数都需要。
区分正比例函数,衡量可分两步走。
一量表示另一量, 是与否。
若有还要看取值,全体实数都要有。
正比例函数的图象与性质
正比函数图直线,经过 和原点。
K正一三负二四,变化趋势记心间。
K正左低右边高,同大同小向爬山。
K负左高右边低,一大另小下山峦。
一次函数
一次函数图直线,经过 点。
K正左低右边高,越走越高向爬山。
K负左高右边低,越来越低很明显。
K称斜率b截距,截距为零变正函。
反比例函数
反比函数双曲线,经过 点。
K正一三负二四,两轴是它渐近线。
K正左高右边低,一三象限滑下山。
K负左低右边高,二四象限如爬山。
二次函数
二次方程零换y,二次函数便出现。
全体实数定义域,图像叫做抛物线。
抛物线有对称轴,两边单调正相反。
A定开口及大小,线轴交点叫顶点。
顶点非高即最低。上低下高很显眼。
如果要画抛物线,平移也可去描点,
提取配方定顶点,两条途径再挑选。
列表描点后连线,平移规律记心间。
左加右减括号内,号外上加下要减。
二次方程零换y,就得到二次函数。
图像叫做抛物线,定义域全体实数。
A定开口及大小,开口向上是正数。
绝对值大开口小,开口向下A负数。
抛物线有对称轴,增减特性可看图。
线轴交点叫顶点,顶点纵标最值出。
如果要画抛物线,描点平移两条路。
提取配方定顶点,平移描点皆成图。
列表描点后连线,三点大致定全图。
若要平移也不难,先画基础抛物线,
顶点移到新位置,开口大小随基础。
【注】基础抛物线
直线、射线与线段
直线射线与线段,形状相似有关联。
直线长短不确定,可向两方无限延。
射线仅有一端点,反向延长成直线。
线段定长两端点,双向延伸变直线。
两点定线是共性,组成图形最常见。
角
一点出发两射线,组成图形叫做角。
共线反向是平角,平角之半叫直角。
平角两倍成周角,小于直角叫锐角。
直平之间是钝角,平周之间叫优角。
互余两角和直角,和是平角互补角。
一点出发两射线,组成图形叫做角。
平角反向且共线,平角之半叫直角。
平角两倍成周角,小于直角叫锐角。
钝角界于直平间,平周之间叫优角。
和为直角叫互余,互为补角和平角。
证等积或比例线段
等积或比例线段,多种途径可以证。
证等积要改等比,对照图形看特征。
共点共线线相交,平行截比把题证。
三点定型十分像,想法来把相似证。
图形明显不相似,等线段比替换证。
换后结论能成立,原来命题即得证。
实在不行用面积,射影角分线也成。
只要学习肯登攀,手脑并用无不胜。
解无理方程
一无一有各一边,两无也要放两边。
乘方根号无踪迹,方程可解无负担。
两无一有相对难,两次乘方也好办。
特殊情况去换元,得解验根是必然。
解分式方程
先约后乘公分母,整式方程转化出。
特殊情况可换元,去掉分母是出路。
求得解后要验根,原留增舍别含糊。
列方程解应用题
列方程解应用题,审设列解双检答。
审题弄清已未知,设元直间两办法。
列表画图造方程,解方程时守章法。
检验准且合题意,问求同一才作答。
添加辅助线
学习几何体会深,成败也许一线牵。
分散条件要集中,常要添加辅助线。
畏惧心理不要有,其次要把观念变。
熟能生巧有规律,真知灼见靠实践。
图中已知有中线,倍长中线把线连。
旋转构造全等形,等线段角可代换。
多条中线连中点,便可得到中位线。
倘若知角平分线,既可两边作垂线。
也可沿线去翻折,全等图形立呈现。
角分线若加垂线,等腰三角形可见。
角分线加平行线,等线段角位置变。
已知线段中垂线,连接两端等线段。
辅助线必画虚线,便与原图联系看。
两点间距离公式
同轴两点求距离,大减小数就为之。
与轴等距两个点,间距求法亦如此。
平面任意两个点,横纵标差先求值。
差方相加开平方,距离公式要牢记。
矩形的判定
任意一个四边形,三个直角成矩形;
对角线等互平分,四边形它是矩形。
已知平行四边形,一个直角叫矩形;
两对角线若相等,理所当然为矩形。
菱形的判定
任意一个四边形,四边相等成菱形;
四边形的对角线,垂直互分是菱形。
已知平行四边形,邻边相等叫菱形;
两对角线若垂直,顺理成章为菱形。
‘贰’ 高中数学知识点整理
下面,我分章节讲一下数学的主干内容:那些虽然课本上没有,但是必须讲也必须学会的东西。
目录(未完待更新):
零,总论与试卷分析(就是上文内容)
一,函数
1.1 集合
1.2 函数的定义域
1.3 函数的值域
1.4 单调性
1.5 奇偶性,对称性,周期性
1.6 指数函数,对数函数
1.7 复合函数
1.8 含参函数
二,三角函数(仅函数部分,解三角形部分等讲完平面向量和平面几何再说)
2.1 正弦,余弦,正切
2.2 三角函数线
2.3 三角函数的基本形式与伸缩
2.4 三角变换公式和万能公式
2.5 三角函数最值问题
三,平面几何,平面向量,与直线与圆的方程
3.1 平行线和相交线
3.2 三角形
3.3 圆
3.4 基向量,正交基,和坐标系
3.5 平面向量与基本几何图形
3.6 向量运算律与推论
3.7 直线方程
3.8 圆的方程
3.9 用向量解决平面几何问题
四,解三角形
4.1 正弦定理
4.2 余弦定理
4.3 正弦定理和余弦定理的应用
4.4 解三角形中的多解问题
4.5 解三角形中的最值问题
五,立体几何
5.1 基本几何体:柱,锥,台,球
5.2 三视图与直观图
一,函数
1.1 集合。
集合的元素必须是确定的,并且是唯一的。比如,一个集合里不能有两个“1”。
1.2 函数的定义域。
除了最常见的几个:分母不为零,对数函数的真数大于零,偶数次方的被开方数不为负(注意我前面几个表述,其中暗含了区间的开闭),正切余切函数不能恰好取定义中分母为零的角度(正切余切都是用比值定义的) 还一定要注意一个容易被忽略的易错点: 无定义。
1.3 函数的值域
分离常数法 判别式法 换元法 基本不等式法 等等几种方法,看起来方法非常繁多,似乎挺难总结,但是,我们如果按题目的形式进行总结,每种只需要掌握一种,或者两种就可以了
‘叁’ 求数学九年级上册沪科版22章相似形知识点总结
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法
‘肆’ 初中数学知识点归纳
数学呢,是一个研究数量,结构变化和空间模型等等的含义的一种科学方式,它是物理化学等科目的基础.而且和我们的日常生活有着很大的关联,所以说,学好数学对于我们每个人来说都是非常重要的.下面就向大家来介绍一下怎么学习初中数学吧!
学习数学还必要的,因为数学是从幼儿园开始就接触的科目,如果说不会数学,那不是太丢人了吗?以下就是关于怎么学习初中数学的技巧:
积极做题
二:考试时的技巧
如果你是想得高分的话,你需要在选择填空,还有计算题上是绝对不能丢分儿的,所以这需要你谨慎的做题.如果是一开始不知道一道题该怎么做,但是后来突然明白的那一种,千万要冷静,不能瞎写,要先在草稿纸上写一遍,最后再放在答题纸上.
以上就是关于怎么学习初中数学的一些技巧.希望大家是可以理解的.其实学习数学并不难,重要的是要多做题.并且了解题型的技巧.
‘伍’ 初二数学下册20与22章概念
对不起22章的是九年级的
第二十章 数据的分析
江苏省赣榆县沙河中学 张庆华
【课标要求】
考点 课标要求 知识与技能目标
了解 理解 掌握 灵活应用
总体、个体、样本、样本容量 了解总体、个体、样本 、样本容量等概念的意义 ∨
平均数、众数、中位数 理解平均数、加权平均数的意义,会求一组数据的平均数 ∨
了解众数、中位数的作用 ∨
会求一组数据的众数与中位数 ∨
极差、方差、标准差 了解极差、方差和标准差的概念 ∨
了解极差、方差和标准差的作用 ∨
会求一组数据的极差、方差、标准差 ∨
【知识梳理】
1.解统计学的几个基本概念
总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
2.平均数
当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式 ,其中a是取接近于这组数据平均数中比较"整"的数;当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
3.众数与中位数
平均数、众数、中位数都是用来描述数据集中趋势的量。平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4.极差
用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差
用"先平均,再求差,然后平方,最后再平均"得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是
s2= [(x1- )2+(x2- )2+…+(xn- )2];
标准差=
方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
【能力训练】
一、填空题:
1.甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:
甲包装机 乙包装机 丙包装机
方差
(克2) 31.96 7.96 16.32
根据表中数据,可以认为三台包装机中, 包装机包装的茶叶质量最稳定。
2.甲、乙、丙三台机床生产直径为60mm的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽查了20个测量其直径,进行数据处理后,发现这三组数据的平均数都是60mm,它们的方差依次为S2甲=0.162,S2乙=0.058,S2丙=0.149.根据以上提供的信息,你认为生产螺丝质量最好的是__ __机床。
3.一组数据:2,-2,0,4的方差是 。
4.在世界环境日到来之际,希望中学开展了"环境与人类生存"主题研讨活动,活动之一是对我们的生存环境进行社会调查,并对学生的调查报告进行评比。初三(3)班将本班50篇学生调查报告得分进行整理(成绩均为整数),列出了频率分布表,并画出了频率分布直方图(部分)如下:
分组 频率
49.5~59.5 0.04
59.5~69.5 0.04
69.5~79.5 0.16
79.5~89.5 0.34
89.5~99.5 0.42
合计 1
根据以上信息回答下列问题:
(1)该班90分以上(含90分)的调查报告共有________篇;
(2)该班被评为优秀等级(80分及80分以上)的调查报告占_________%;
(3)补全频率分布直方图。
5.据资料记载,位于意大利的比萨斜塔1918~1958这41年间,平均每年倾斜1.1mm;1959~1969这11年间,平均每年倾斜1.26mm,那么1918~1969这52年间,平均每年倾斜约_________(mm)(保留两位小数)。
6.为了缓解旱情,我市发射增雨火箭,实施增雨作业,在一场降雨中,某县测得10个面积相等区域的降雨量如下表:
区域 1 2 3 4 5 6 7 8 9 10
降雨量(mm) 10 12 13 13 20 15 14 15 14 14
则该县这10个区域降雨量的众数为________(mm);平均降雨量为________(mm)。
7.一个射箭运动员连续射靶5次,所得环数分别是8,6,10,7,9,则这个运动员所得环数的标准差为________。
8.下图显示的是今年2月25日《太原日报》刊登的太原市2002年至2004年财政总收入完成情况,图中数据精确到1亿元,根据图中数据完成下列各题:
(1)2003年比2002年财政总收入增加了_______亿元;
(2)2004年财政总收入的年增长率是_______;(精确
到1%)
(3)假如2005年财政总收入的年增长率不低于2004年
财政总收入的年增长率,预计2005年财政总收入至少达
到___亿元。(精确到1亿元)
9.为了调查某一路口某时段的汽车流量,交警记录了一个星期同一时段通过该路口的汽车辆数,记录的情况如下表:
星期 一 二 三 四 五 六 日
汽车辆数 100 98 90 82 100 80 80
那么这一个星期在该时段通过该路口的汽车平均每天为___ ____辆。
10.图(1)(2)是根据某地近两年6月上旬日平均气温情况绘制的折线统计
图,通过观察图表,可以判断这两年6月上旬气温比较稳定的年份是 。
二、解答题:
1.下图反映了被调查用户对甲、乙两种品牌空调售后服务的满意程度(以下称:用户满意程度),分为很不满意、不满意、较满意、很满意四个等级,并依次记为1分、2分、3分、4分。
⑴、分别求甲、乙两种品牌用户满意程度分数的平均值(计算结果精确到0.01分);
⑵、根据条形统计图及上述计算结果说明哪个品牌用户满意程度较高?该品牌用户满意程度分数的众数是多少?
2.如图所示,A、B两个旅游点从2002年至2006年"五、一"的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题:
(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?
(2)求A、B两个旅游点从2002到2006年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;
(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系 .若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少?
3.如图是连续十周测试甲、乙两名运动员体能训练情况的折线统计图。教练组规定:体能测试成绩70分以上(包括70分)为合格。
⑴请根据图中所提供的信息填写下表:
平均数 中位数 体能测试成绩合格次数
甲 65
乙 60
⑵请从下面两个不同的角度对运动员体能测试结果进行判断:
①依据平均数与成绩合格的次数比较甲和乙, 的体能测试成绩较好;
②依据平均数与中位数比较甲和乙, 的体能测试成绩较好。
⑶依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好。
4.为了帮助贫困失学儿童,某团市委发起"爱心储蓄"活动,鼓励学生将自己的压岁钱和零花钱存入银行,定期一年,到期后可取回本金,而把利息捐给贫困失学儿童.某中学共有学生1200人,图1是该校各年级学生人数比例分布的扇形统计图,图2是该校学生人均存款情况的条形统计图.
(1)九年级学生人均存款元;
(2)该校学生人均存款多少元?
(3)已知银行一年期定期存款的年利率是2.25%
("爱心储蓄"免收利息税),且每351元能提供 给一位失学儿童一学年的基本费用,那么该校一学年能帮助多少为贫困失学儿童。
参考答案:
一、填空题:
1.乙;2. 乙;3.5;4.21,76;5.1.13;6.14,14;7. ;8.(1)19 (2)30%(3)156;9.90;10.2005
二、解答题:
1.⑴、甲品牌被调查用户数为:50+100+200+100=450(户)
乙品牌被调查用户数为:10+90+220+130=450(户)
甲品牌满意程度分数的平均值=≈2.78分
乙品牌满意程度分数的平均值=≈3.04分
答:甲、乙品牌满意程度分数的平均值分别是2.78分、3.04分。
⑵、用户满意程度较高的品牌是乙品牌。
因为乙品牌满意程度分数的平均值较大,且由统计图知,乙品牌"较满意"、"很满意"的用户数较多;该品牌用户满意程度的众数是3分。
2.(1)B旅游点的旅游人数相对上一年增长最快的是2005年.
(2) = =3(万元)
= =3(万元) = [(-2) +(-1) +0 +1 +2 ]=2
= [0 +0 +(-1) +1 +0 ]=
从2002至2006年,A、B两个旅游点平均每年的旅游人数均为3万人,但A旅游点较B旅游点的旅游人数波动大.
(3)由题意,得 5- ≤4 解得x≥100 100-80=20
答:A旅游点的门票至少要提高20元。
3.(1)
平均数 中位数 体能测试成绩合格次数
甲 60 65 2
乙 60 57.5 4
⑵ ①乙;②甲
⑶ 从折线图上看,两名运动员体能测试成绩都呈上升趋势,但是,乙的增长速度比甲快,并且后一阶段乙的成绩合格次数比甲多,所以乙训练的效果较好。
4.(1)240(2) 解法一:
七年级存款总额:400×1200×40% = 192000(元)
八年级存款总额:300×1200×35% = 126000 (元)
九年级存款总额: 240×1200×25% = 72000 (元)
(192000+126000+72000)÷ 1200 = 325 (元)
所以该校的学生人均存款额为 325 元
解法二: 400×40% + 300×35% + 240×25% = 325 元
所以该校的学生人均存款额为 325 元
(3)解法一: (192000+126000+72000)×2.25% ÷351= 25(人)
解法二: 325×1200×2.25%÷351 = 25(人)。
‘陆’ 小学数学知识点总结(全部)
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
‘柒’ 高中数学选修2-2知识点(人教版、)
从我省的实际情况来讲,本书的第一章是重点 先看第三章复数 1概念(就是要在心中牢记的) 复数、复数集、实部、虚部 P103 复平面、实轴、虚轴 P104 区分向量的模与复数的模 P105 共轭复数 P110 2计算(考试中主要的考点,常出在选择填空,重点) 四则运算 P107-110 重点是分母实数化 再看第二章 1概念 归纳推理P71 类比推理P73 演绎推理P78,三段论是重点 2技巧 反证法P89 数学归纳法(完全归纳)P93 出于弱化技巧,强化计算的高考方针,对于技巧的考察要求在降低,对于这些证明思想,或者说方法只要知道就行,如果考到也是倒数第二道大题的第三小问,学有余力的同学可以试试。一般的同学没必要花太多时间。 第一章 重点中的重点 每年必考 占卷面分数在25以上 初级要求 1概念 平均变化率P3 瞬时变化率、导数、导数的定义式P5 导函数P9 2计算 基本初等函数的导数公式P14 熟记 导数运算法则P15 熟记 复合函数求导P17难点,联系必修一中关于复合函数的定义复习 3应用 研究函数单调性P23黑体字 研究函数极值P29黑体字 研究函数最值P31黑体字 定积分在我省不考,如果要复习,则知道其计算方法即可P47 P53微积分基本定理 以上是初级要求 概念知道,会求导是关键。 中级要求 导数定义式的变形P5① 会分析原函数图像与导函数图像,特别注意与x轴的交点的含义,对应起来 增加复合函数的复杂度,锻炼求导的准确性,求导是计算的第一步,如果错了,嘿嘿~~~~ 重点关注P32习题B组第一大题,这四个小题讲的是如何构造新函数用导数知识判断大小 这是压轴题第二小题的基本模型,用导数沟通了函数的单调性与大小的比较。一般压轴题做到最后就是构造函数,用导数判断单调性,比大小 高级要求 联系物理知识,运动定理 学会求二阶导数,以此来研究一阶导数的性质,在通过此研究原函数性质。属于压轴题的最后一小题类型,常常结合函数的构造,变形,不等式的放缩法等 注重细节,比如y=1/x 的两个单调递减区间之间是不能用∪的。