当前位置:首页 » 基础知识 » 浙教七上数学知识点导图
扩展阅读
沂源县教育局是什么 2025-01-18 09:47:37

浙教七上数学知识点导图

发布时间: 2022-07-19 18:18:08

1. 七年级的上册的数学的(丰富的图形世界)的思维导图

数学活动与思考
我们要学会用数学的眼光看世界--丰富多彩的图形世界.在“图形世界”里,见到许多熟悉的基本图形,感受到图形的平移、翻折、旋转等变化;也发现“图形世界”是由基本图形构成的.可以利用这些变化和基本图形设计出符合要求的图形.
例:直角三角形通过剪切可以拼成一个与该直角三角形面积相等的长方形.方法如图示:
请你用图示的方法解答下列问题:

(1)如图,对一个任意的三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的长方形;

(2)如图,对一个任意的四边形,设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的长方形;
考点:作图—应用与设计作图;三角形的面积;三角形中位线定理;矩形的性质.专题:开放型.分析:(1)利用已知找出三角形两边中点,进而作出高线即可得出分割图形;
(2)分别得出四边形各边中点,进而得出两三角形高线,即可得出分割方案.解答:解:(1)如图所示:

(2)如图所示:
点评:此题主要考查了应用与图形设计,利用已知得出作各边中点得出高线是解题关键.

2. 初中数学知识导图

网络图就没有了,知识点可以不?好多的知识点…还是要慢慢的一点一点的啃啊,当初我就是这样啃过来的~~
初中数学概念及定义总结:三角形三条边的关系 定理:三角形两边的和大于第三边 推论:三角形两边的差小于第三边 三角形内角和 三角形内角和定理 三角形三个内角的和等于180° 推论1 直角三角形的两个锐角互余 推论2 三角形的一个外角等于和它不相邻的两个内角和 推论3 三角形的一个外角大雨任何一个和它不相邻的内角 角的平分线 性质定理 在角的平分线上的点到这个角的两边的距离相等 判定定理 到一个角的两边的距离相等的点,在这个角的平分线上 等腰三角形的性质 等腰三角形的性质定理 等腰三角形的两底角相等 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 推论2 等边三角形的各角都相等,并且每一个角等于60° 等腰三角形的判定 判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等 推论1 三个角都相等的三角形是等边三角形 推论2 有一个角等于60°的等腰三角形是等边三角形 推论3 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 线段的垂直平分线 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 轴对称和轴对称图形 定理1 关于某条之间对称的两个图形是全等形 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 定理3 两个图形关于某直线对称,若它们的对应线段或延长线相交,那么交点在对称轴上 逆定理 若两个图形的对应点连线被同一条直线垂直平分,那这两个图形关于这条直线对称 勾股定理 勾股定理 直角三角形两直角边a、b的平方和,等于斜边c的平方,即 a2 + b2 = c2 勾股定理的逆定理 勾股定理的逆定理 如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形 四边形 定理 任意四边形的内角和等于360° 多边形内角和 定理 多边形内角和定理n边形的内角的和等于(n - 2)·180° 推论 任意多边形的外角和等于360° 平行四边形及其性质 性质定理1 平行四边形的对角相等 性质定理2 平行四边形的对边相等 推论 夹在两条平行线间的平行线段相等 性质定理3 平行四边形的对角线互相平分 平行四边形的判定 判定定理1 两组对边分别平行的四边形是平行四边形 判定定理2 两组对角分别相等的四边形是平行四边形 判定定理3 两组对边分别相等的四边形是平行四边形 判定定理4 对角线互相平分的四边形是平行四边形 判定定理5 一组对边平行且相等的四边形是平行四边形 矩形 性质定理1 矩形的四个角都是直角 性质定理2 矩形的对角线相等 推论 直角三角形斜边上的中线等于斜边的一半 判定定理1 有三个角是直角的四边形是矩形 判定定理2 对角线相等的平行四边形是矩形 菱形 性质定理1 菱形的四条边都相等 性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 判定定理1 四边都相等的四边形是菱形 判定定理2 对角线互相垂直的平行四边形是菱形 正方形 性质定理1 正方形的四个角都是直角,四条边都相等 性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 中心对称和中心对称图形 定理1 关于中心对称的两个图形是全等形 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 梯形 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 三角形、梯形中位线 三角形中位线定理 三角形的中位线平行与第三边,并且等于它的一半 梯形中位线定理 梯形的中位线平行与两底,并且等于两底和的一半 比例线段 1、 比例的基本性质 如果a∶b=c∶d,那么ad=bc 2、 合比性质 3、 等比性质 平行线分线段成比例定理 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 推论 平行与三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行与三角形的第三边 垂直于弦的直径 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧 推论1 (1) 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 (2) 弦的垂直平分线过圆心,并且平分弦所对的两条弧 (3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 圆的两条平分弦所夹的弧相等 圆心角、弧、弦、弦心距之间的关系 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等 圆周角 定理 一条弧所对的圆周角等于它所对的圆心角的一半 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直角 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 圆的内接四边形 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 切线的判定和性质 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 切线的性质定理 圆的切线垂直于经过切点半径 推论1 经过圆心且垂直于切线的直径必经过切点 推论2 经过切点且垂直于切线的直线必经过圆心 切线长定理 定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 弦切角 弦切角定理 弦切角等于它所夹的弧对的圆周角 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 和圆有关的比例线段 相交弦定理:圆内的两条相交弦,被焦点分成的两条线段长的积相等 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项 ……

太多了,不过网络很强大,之前有人问过类似的问题,这个可以看看http://..com/question/147977826.html?fr=qrl&cid=197&index=2&fr2=query

3. 初一数学上册知识点,思维导图急用

思维导图,也被称为思维导图是一种有效的图形化工具,想表达的推出思想。一种革命性的思维工具。简单但非常有效!思维导图使用的图形并重的技能,和主题的关系,在各级体现相互隶属的层次结构图,主题关键字和图像,色彩,创建一个内存链接,思维导图的左,右大脑充分利用功能,记忆,阅读,思考法律,以帮助人们平衡科学与艺术,逻辑和想象力的发展,从而开启人类大脑的无限潜力。思维导图因此,人的心灵的力量。
?思维导图是一个特定的放射性思维。我们知道,放射性思维是自然的方式思考人的大脑,每一个进入大脑,无论感受,记忆或想法 - 包括文字,数字,符号,食物,香气,线条,色彩,意象,节奏,音符等等,都可以成为一个思考中心,并由此中心向外发散成千上万的关节,每一个关节点代表的中心主题的一个环节,每个环节都可以成为另一个中心主题的向外发散数千关节,这些关节的链接,你的记忆,是你的个人数据库。
人类从出生开始积累这样一个庞大而复杂的数据库惊人的存储容量的大脑,使我们积累了大量的信息,通过思维导图的放射性思维方法,除了加速累积的数据量,数据?是分级分类管理的基础上彼此之间的相关性,因此,数据存储,管理和更系统的应用,提高营运效率的大脑。同时,思维导图是最好用的左脑和右脑的功能,颜色,图像,符号使用,将不仅帮助我们的记忆中,提高我们的创造力,也让心灵更有趣,并且有个人的性格特点和多方面的。
?思维导图的收放自如放射性思维模式的基础上,除了提供一个正确和快速学习的方法和工具使用与创意,项目规划的衔接,解决问题和分析,会议管理,令人惊讶的结果往往。这是表演极端个人智力潜能的方法来提高的思维能力将显着增强记忆力,组织能力和创造力。的飞跃差分法与传统的笔记和学习方法,主要是因为它是从脑生理学的学习互动模式,并进行人类是天生的放射性思维能力和多感官学习特性。
?心灵上图提供一个有效的人类思维的图形化工具,使用图形技术都打开人类大脑的无限潜力。充分利用思维导图的左,右大脑功能,帮助人们科学与艺术,逻辑和想象力之间的平衡。的思维导图完整的逻辑架构和全脑思维,近年来已被广泛应用在世界和中国学习和工作,并显着减少所需的时间耗费和物力资源,每个人或公司业绩大幅增加,不可避免地产生巨大的效益,是不可忽视的。
?思维导图的创始人托尼·巴赞(东尼?博赞),他的大脑先生,国际知名,成为总统的英国头脑基金会,谁是国际奥委会的教练和运动员的顾问,也担任英国奥运赛艇队,国际象棋的顾问团队;被选定为国际心理学家理事会委员会的成员,创作的“精神文化的概念,也是”世界记忆锦标赛协会发起的心理奥运会组织的创始人,致力于帮助那些有学习障碍的人也有标题的世界创造力IQ最高的。截至1993年,托尼·巴赞已经出版了20本书,其中包括19专论的思想,创造力和学习,以及一本诗集。

4. 七年级上册数学第二章思维导图


如图

5. 七年级数学上册整本书的思维导图。谢谢


您看看行不行

6. 七年级上册数学思维导图

UCFP:ba840404-fc69-4b6e-c375-3af108060459-1571538722232

7. 初中数学所有章节思维导图

推荐你用初中数学知识大全软件