当前位置:首页 » 基础知识 » 八年级数学上册苏教版基本知识
扩展阅读
如何写我们的家乡歌词 2024-11-07 11:32:56

八年级数学上册苏教版基本知识

发布时间: 2022-07-19 17:48:35

㈠ 苏教版初中上册数学知识点总结

苏教版七年级数学上册基本知识点

第一章 我们与数学同行(略)

第二章 有理数

一、正数和负数

⒈正数和负数的概念

负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2.具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8℃表示为:+8℃;零下8℃表示为:-8℃

3.0表示的意义 ⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;

⑵0是正数和负数的分界线,0既不是正数,也不是负数。

未完:参考资料:https://wenku..com/view/49f368483b3567ec102d8acb.html

㈡ 苏教版八年级上册数学课本学什么

第一章 轴对称图形
1、1 轴对称与轴对称图形
1.2 轴对称的性质
1.3 设计轴对称图案
1.4 线段、角的轴对称性
1.5 等腰三角形的轴对称性
1.6 等腰梯形的轴对称性
全章复习与测试
数学活动 剪纸
小结与思考
第二章 勾股定理与平方根
2.1 勾股定理
2.2 神秘的数组
2.3 平方根
2.4 立方根
2.5 实数
2.6 近似数与有效数字
2.7 勾股定理的应用
全章复习与测试
数学活动:关于勾股定理的研究
小结与思考
第三章 中心对称图形(一)
3.1 图形的旋转
3.2 中心对称与中心对称图形
3.3 设计中心对称图案
3.4 平行四边形
3.5 矩形、菱形、正方形
3.6 三角形、梯形的中位线
全章复习与测试
数学活动 镶嵌
小结与思考
第四章 数量、位置的变化
4.1 数量的变化
4.2 位置的变化
4.3 平面直角坐标系
全章复习与测试
数学活动:确定藏宝地
小结与思考
第五章 一次函数
5.1 函数
5.2 一次函数
5.3 一次函数的图象
5.4 一次函数的应用
5.5 二元一次方程组的图象解法
全章复习与测试
数学活动:温度计上的一次函数
小结与思考
第六章 数据的集中程度
6.1 平均数
6.2 中位数与众数
6.3 用计算器求平均数
全章复习与测试
数学活动:你是“普通”学生吗
小结与思考
综合复习与测试
教案课件综合
月考试题
期中练习与测试
期末练习与测试

㈢ 急求八年级上册数学苏教版公式定理及知识点的整理。务求完整准确。

http://www.360doc.com/content/10/1109/10/1705697_67837423.shtml
应该可以的吧
采纳吧

㈣ 苏教版初中数学知识点

初中几何证明题重要的是全等,特别是初三中用的很多
初二中的梯形几何也很重要,新课本中的相关知识较少,但到了初三用的很多,主要是要记住经典例题的图形,在遇到新题是去构成熟悉的图形
函数也是很重要的,初二主要是正比例函数和一次函数,题目不难,主要弄清楚函数图形和变化趋势,初三的二次函数较难,是考试压轴题的必选,对于函数,必有坐标,解题的关键是每个点的坐标,函数与几何的结合题是难题,一般是大题,做题是不要求得满分,要尽量多得分
另外代数袋鼠方面因式分解是一个重点,其中十字相乘法最难,但到了初三用的很多,要打好基础
解方程不是难点,在多练习的基础上便可游刃有余,主要是一元二次方程的诸多方法
用方程解决实际问题要注意是否要舍去

㈤ 初二上学期数学知识点 苏教版

过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角

㈥ 初二数学知识点总结 上册的

(一)运用公式法:
我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。
(三)因式分解
1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点
①项数:三项
②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法
我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)•(a +b).
这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.
(六)提公因式法
1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.
2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:
1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于
一次项的系数.
2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:
① 列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数.
3.将原多项式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一个分式的分子与分母的公因式约去,叫做分式的约分.
2.分式进行约分的目的是要把这个分式化为最简分式.
3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.
6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.
(八)分数的加减法
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.
4.通分的依据:分式的基本性质.
5.通分的关键:确定几个分式的公分母.
通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
6.类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。
8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.
10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.
11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.
12.作为最后结果,如果是分式则应该是最简分式.
(九)含有字母系数的一元一次方程
1.含有字母系数的一元一次方程
引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)
在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。
含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边

17 三角形内角和定理三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

㈦ 初二上学期数学所有知识点归纳

初二数学知识点
第一章 一次函数
1 函数的定义,函数的定义域、值域、表达式,函数的图像
2 一次函数和正比例函数,包括他们的表达式、增减性、图像
3 从函数的观点看方程、方程组和不等式
第二章 数据的描述
1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点
条形图特点:
(1)能够显示出每组中的具体数据;
(2)易于比较数据间的差别
扇形图的特点:
(1)用扇形的面积来表示部分在总体中所占的百分比;
(2)易于显示每组数据相对与总数的大小
折线图的特点;
易于显示数据的变化趋势
直方图的特点:
(1)能够显示各组频数分布的情况;
(2)易于显示各组之间频数的差别
2 会用各种统计图表示出一些实际的问题
第三章 全等三角形
1 全等三角形的性质:
全等三角形的对应边、对应角相等
2 全等三角形的判定
边边边、边角边、角边角、角角边、直角三角形的HL定理
3 角平分线的性质
角平分线上的点到角的两边的距离相等;
到角的两边距离相等的点在角的平分线上。
第四章 轴对称
1 轴对称图形和关于直线对称的两个图形
2 轴对称的性质
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;
线段垂直平分线上的点到线段两个端点的距离相等;
到线段两个端点距离相等的点在这条线段的垂直平分线上
3 用坐标表示轴对称
点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).
4 等腰三角形
等腰三角形的两个底角相等;(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)
一个三角形的两个相等的角所对的边也相等。(等角对等边)
5 等边三角形的性质和判定
等边三角形的三个内角都相等,都等于60度;
三个角都相等的三角形是等边三角形;
有一个角是60度的等腰三角形是等边三角形;
推论:
直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。
在三角形中,大角对大边,大边对大角。

第五章 整式
1 整式定义、同类项及其合并
2 整式的加减
3 整式的乘法
(1)同底数幂的乘法:
(2)幂的乘方
(3)积的乘方
(4)整式的乘法
4 乘法公式
(1)平方差公式
(2)完全平方公式
5 整式的除法
(1)同底数幂的除法
(2)整式的除法
6 因式分解
(1)提共因式法
(2)公式法
(3)十字相乘法

初二下册知识点
第一章 分式
1 分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2 分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2) 分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减
3 整数指数幂的加减乘除法
4 分式方程及其解法
第二章 反比例函数
1 反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2 反比例函数在实际问题中的应用
第三章 勾股定理
1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章 四边形
1 平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2 特殊的平行四边形:矩形、菱形、正方形
(1) 矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定: 有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论: 直角三角形斜边的中线等于斜边的一半。
(2) 菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形。
(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形。
第五章 数据的分析
加权平均数、中位数、众数、极差、方差

㈧ 数学八年级上册知识点,要总结归纳

八年级上册数学复习提纲
1 全等三角形的对应边、对应角相等 ¬
2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 ¬
3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 ¬
4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 ¬
5 边边边公理(SSS) 有三边对应相等的两个三角形全等 ¬
6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 ¬
7 定理1 在角的平分线上的点到这个角的两边的距离相等 ¬
8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 ¬
9 角的平分线是到角的两边距离相等的所有点的集合 ¬
10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) ¬
21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 ¬
22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 ¬
23 推论3 等边三角形的各角都相等,并且每一个角都等于60° ¬
24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) ¬
25 推论1 三个角都相等的三角形是等边三角形 ¬
26 推论 2 有一个角等于60°的等腰三角形是等边三角形 ¬
27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 ¬
28 直角三角形斜边上的中线等于斜边上的一半 ¬
29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ¬
30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 ¬
31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 ¬
32 定理1 关于某条直线对称的两个图形是全等形 ¬
33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 ¬
34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 ¬
35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 ¬
36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 ¬
37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 ¬
38定理 四边形的内角和等于360° ¬
39四边形的外角和等于360° ¬
40多边形内角和定理 n边形的内角的和等于(n-2)×180° ¬
41推论 任意多边的外角和等于360° ¬
42平行四边形性质定理1 平行四边形的对角相等 ¬
43平行四边形性质定理2 平行四边形的对边相等 ¬
44推论 夹在两条平行线间的平行线段相等 ¬
45平行四边形性质定理3 平行四边形的对角线互相平分 ¬
46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 ¬
47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 ¬
48平行四边形判定定理3 对角线互相平分的四边形是平行四边形 ¬
49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 ¬
50矩形性质定理1 矩形的四个角都是直角 ¬
51矩形性质定理2 矩形的对角线相等 ¬
52矩形判定定理1 有三个角是直角的四边形是矩形 ¬
53矩形判定定理2 对角线相等的平行四边形是矩形 ¬
54菱形性质定理1 菱形的四条边都相等 ¬
55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 ¬
56菱形面积=对角线乘积的一半,即S=(a×b)÷2 ¬
57菱形判定定理1 四边都相等的四边形是菱形 ¬
58菱形判定定理2 对角线互相垂直的平行四边形是菱形 ¬
59正方形性质定理1 正方形的四个角都是直角,四条边都相等 ¬
60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 ¬
61定理1 关于中心对称的两个图形是全等的 ¬
62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 ¬
63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 ¬
点平分,那么这两个图形关于这一点对称 ¬
64等腰梯形性质定理 等腰梯形在同一底上的两个角相等 ¬
65等腰梯形的两条对角线相等 ¬
66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 ¬
67对角线相等的梯形是等腰梯形 ¬
68平行线等分线段定理 如果一组平行线在一条直线上截得的线段 ¬
相等,那么在其他直线上截得的线段也相等 ¬
69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 ¬
70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 ¬
三边 ¬
71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 ¬
的一半 ¬
72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 ¬
一半 L=(a+b)÷2 S=L×h ¬
73 (1)比例的基本性质 如果a:b=c:d,那么ad=bc ¬
如果ad=bc,那么a:b=c:d ¬
74 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d ¬
75 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 ¬
(a+c+…+m)/(b+d+…+n)=a/b ¬
76 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 ¬
线段成比例 ¬
77 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 ¬
78 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 ¬
79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 ¬
80 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 ¬
81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) ¬
82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 ¬
83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) ¬
84 判定定理3 三边对应成比例,两三角形相似(SSS) ¬

㈨ 八年级上册数学知识点归纳、总结 人教版、

一.整式
1.1:加减
1.2:乘法
1.3:公式:1.平方差
2.完全平方
1.4:除法
1.5:因式分解
二.分式
2.1:定义
2.2:运算
2.3:方程
三.反比例函数
3.1:定义
3.2:利用反比例函数解决实际问题
四.轴对称
4.1:定义
4.2:轴对称变换
4.3:等腰三角形
五.总复习
回答者: 郑长春123 - 门吏 二级 2-15 14:09
=======================================================
知 识 点 能力要求 了解 理解 掌握 应用 轴对称图形、轴对称的概念 √ 轴对称图形的对称轴及轴对称的对称轴、对称点 √ 轴对称图形与轴对称的区别和联系 √ 线段垂直平分线的定义和性质 √ 成轴对称的两个图形的性质 √ 利用轴对称的性质作简单的轴对称 √ 利用轴对称进行图案设计 √ 对称图案中颜色的对称 √ 利用网格设计轴对称图案 √ 线段是轴对称图形 √ 线段的垂直平分线的性质 √ 角是轴对称图形 √ 角平分线的性质 √ 等腰三角形的轴对称性 √ 等腰三角形的性质 √ √ 等腰三角形三线合一的性质 √ 运用等腰三角形的性质解决问题 √ 等边三角形及直角三角形的性质 √ 梯形及等腰梯形的概念 √ 梯形及等腰梯形的性质 √ 梯形辅助线的几种作法 √ 等腰梯形同一底上的两个内角相等、两条对角线相等 √ 等腰梯形是轴对称图形 √ 等腰梯形的判定 √ 苏科版八年级数学(上)知识点系目表 2008.9 勾股定理 √ 面积法证明勾股定理 √ 直角三角形的判定条件 √ 利用直角三角形的判定条件判定三角形 √ 勾股定理的实际应用 √ 勾股数的概念 √ 平方根的概念 √ 求一个非负数的平方根 √ 平方根的性质 √ 开平方的概念 √ , √ 立方根的概念 √ 求一个实数的立方根 √ 立方根的性质 √ 开立方的概念 √ 无理数、实数的概念 √ 实数的分类 √ 实数的大小比较 √ 用计算器计算 √ 实数范围内的运算 √ 近似数的概念 √ 根据要求取近似数 √ 有效数字的概念 √ 1.旋转的基本性质。 √ 2.按要求作出简单的平面图形通过旋转后的形 √ 3.中心对称及中心对称图形的有关概念和性质 √ 4.画出已知图形成中心对称,会设计中心对称案 √ 5.平行四边形的性质; √ 6.运用平行四边形的性质解决实际问题 √ 7.平行四边形的判定方法 √ 8.运用平行四边形的判定和性质解决实际问题; √ 9矩形、菱形、正方形的概念及其特殊的性质。 √ 10.矩形、菱形、正方形的判断方法,运用矩形、菱形、正方形的判定和性质解决实际问题 √ 11.三角形中位线概念、性质. √ 12.会利用三角形的中位线的性质解决有关问题. √ 13.梯形的中位线的概念和性质; √ 14.能应用梯形的中位线的性质解决有关问题 √ 15.理解镶嵌的意义,进行简单的镶嵌设计 √ 1、感受可以用多种方法记录、描绘后表示变化的数量及变化规律 √ 2、能根据图表所提供的信息,探索数量变化的某些联系 √ 3、会描述物体运动的路径 √ 4、能根据经纬度确定移动物体位置变化的路径 √ 5、会用变化的数量描绘物体位置的变化 √ 6、领会实际模型中确定位置的方法,会正确画出平面直角坐标系 √ 7、在给定的直角坐标系中,根据点的坐标描出点的位置 √ 8、在给定的直角坐标系中,会由点的位置写出点的坐标 √ 9、在同一直角坐标系中,探索位置变化与数量变化的关系 √ 10、在同一直角坐标系中,探索图形位置的变化与点的坐标变化的关系 √ 11、能建立适当直角坐标系,将实际问题数学化,并会用直角坐标系解决问题 √ 常量、变量意义 √ 函数概念和三种表示方法 √ 结合图象分析实际问题中的函数关系 √ 确定自变量的取值范围 √ 求函数值 √ 正比例函数概念 √ 一次函数概念 √ 根据已知条件确定一次函数解析式 √ 会画一次函数图象 √ 正比例函数图象性质 √ 一次函数图象性质 √ 一次函数图象的性质(k>0或k<0图象的变化) √ 直线在平面直角坐标系中的平移 √ 直线与直线的对称 √ 直线的旋转 √ 平面直角坐标系中的面积 √ 一次函数解决实际问题 √ 对变量的变化规律进行初步预测 √ 图象发求二元一次方程组的解 √ 1.算术平均数和加权平均数的意义。 √ 2.求一组数据的算术平均数和加权平均数。 √ 3.权的差异对平均数的影响。 √ 4.算术平均数与加权平均数的联系与区别。 √ 5.利用算术平均数和加权平均数解决实际问题。 √ 6.中位数和众数代表的概念。 √ 7.根据所给的信息求出一组数据的中位数、众数。 √ 8.平均数、中位数、众数的区别与联系。 √ 9选择合适的统计量表示数据的集中程度。 √ 10.利用计算器求一组数据的平均数。 √ 11.经历数据的收集、加工、整理和描述的统计过程,提高数据处理能力,发展统计意识。 (去买本老师用书)

给些例题
小结
例题:
1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;
(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线
(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。

(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。

(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:
(1)图象在平面直角坐标系中的位置:

(2)增减性:

k>0时,y随x增大而增大;
k<0时,y随x增大而减小。
4、求一次函数解析式的方法
求函数解析式的方法主要有三种:
一是由已知函数推导,如例题1;
二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。
二、例题举例:
例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x的关系。
解:∵ y=2y1
y1=3x+2,
∴ y=2(3x+2)=6x+4,
即变量y与x的关系为:y=6x+4。
例2、解答下列题目
(1)(甘肃省中考题)已知直线 与y轴交于点A,那么点A的坐标是( )。
(A)(0,–3) (B) (C) (D)(0,3)

(2)(杭州市中考题)已知正比例函数 ,当x=–3时,y=6.那么该正比例函数应为( )。
(A) (B) (C) (D)

(3)(福州市中考题)一次函数y=x+1的图象,不经过的象限是( )。
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
分析与答案:
(1) 直线与y轴交点坐标,特点是横坐标是0,纵坐标可代入函数关系求得。
或者直接利用直线和y轴交点为(0,b),得到交点(0,3),答案为D。
(2) 求解析式的关键是确定系数k,本题已知x=-3时,y=6,代入到y=kx中,解析式可确定。答案D: y=-2x。
(3) 由一次函数y=kx+b的图象性质,有以下结论:

题目中y=x+1,k=1>0,则函数图象必过一、三象限;b=1>0,则直线和y轴交于正半轴,可以判定直线位置,也可以画草图,或取两个点画草图判断,图像不过第四象限。

答案:D。

例3、(辽宁省中考题)某单位急需用车;但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家签订月租车合同。设汽车每月行驶x千米,应付给个体车主的月费用是y1元,应付给出租车公司的月费用是y2元,y1、y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:
(1)每月行驶的路程在什么范围内时,租国营公司的车合算?
(2)每月行驶的路程等于多少时,租两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算?

分析:因给出了两个函数的图象可知一个是一次函数,一个是一次函数的特殊形式正比例函数,两条直线交点的横坐标为1500,表明当x=1500时,两条直线的函数值y相等,并且根据图像可以知道x>1500时,y2在y1上方;0<x<1500时,y2在y1下方。利用图象,三个问题很容易解答。
答:(1)每月行驶的路程小于1500千米时,租国营公司的车合算。
[或答:当0≤x<1500(千米)时,租国营公司的车合算]。
(2)每月行驶的路程等于1500千米时,租两家车的费用相同。
(3)如果每月行驶的路程为2300千米,那么这个单位租个体车主的车合算。
例4、(河北省中考题)某工厂有甲、乙两条生产线先后投产。在乙生产线投产以前,甲生产线已生产了200吨成品;从乙生产线投产开始,甲、乙两条生产线每天分别生产20吨和30吨成品。
(1)分别求出甲、乙两条生产线投产后,各自总产量y(吨)与从乙开始投产以来所用时间x(天)之间的函数关系式,并求出第几天结束时,甲、乙两条生产线的总产量相同;
(2)在如图所示的直角坐标系中,作出上述两个函数在第一象限内的图象;观察图象,分别指出第15天和第25天结束时,哪条生产线的总产量高?

分析:(1)根据给出的条件先列出y与x的函数式, =20x+200, =30x,当 = 时,求出x。
(2)在给出的直角坐标系中画出两个函数的图象,根据点的坐标可以看出第15天和25天结束时,甲、乙两条生产线的总产量的高低。

解:(1)由题意可得:
甲生产线生产时对应的函数关系式是:y=20x+200,
乙生产线生产时对应的函数关系式是:y=30x,
令20x+200=30x,解得x=20,即第20天结束时,两条生产线的产量相同。
(2)由(1)可知,甲生产线所对应的生产函数图象一定经过两点A(0,200)和
B(20,600);
乙生产线所对应的生产函数图象一定经过两点O(0,0)和B(20,600)。
因此图象如右图所示,由图象可知:第15天结束时,甲生产线的总产量高;第25天结束时,乙生产线的总产量高。
例5.直线y=kx+b与直线y=5-4x平行,且与直线y=-3(x-6)相交,交点在y轴上,求此直线解析式。
分析:直线y=kx+b的位置由系数k、b来决定:由k来定方向,由b来定与y轴的交点,若两直线平行,则解析式的一次项系数k相等。例如y=2x,y=2x+3的图象平行。
解:∵ y=kx+b与y=5-4x平行,
∴ k=-4,
∵ y=kx+b与y=-3(x-6)=-3x+18相交于y轴,
∴ b=18,
∴ y=-4x+18。
说明:一次函数y=kx+b图象的位置由系数k、b来决定:由k来定方向,由b来定点,即函数图象平行于直线y=kx,经过(0,b)点,反之亦成立,即由函数图象方向定k,由与y轴交点定b。
例6.直线与x轴交于点A(-4,0),与y轴交于点B,若点B到x轴的距离为2,求直线的解析式。
解:∵ 点B到x轴的距离为2,
∴ 点B的坐标为(0,±2),
设直线的解析式为y=kx±2,
∵ 直线过点A(-4,0),
∴ 0=-4k±2,
解得:k=± ,
∴直线AB的解析式为y= x+2或y=- x-2。

说明:此例看起来很简单,但实际上隐含了很多推理过程,而这些推理是求一次函数解析式必备的。
(1)图象是直线的函数是一次函数;
(2)直线与y轴交于B点,则点B(0,yB);
(3)点B到x轴距离为2,则|yB|=2;
(4)点B的纵坐标等于直线解析式的常数项,即b=yB;
(5)已知直线与y轴交点的纵坐标yB,可设y=kx+yB;
下面只需待定k即可。
三、提高与思考
例1.已知一次函数y1=(n-2)x+n的图象与y轴交点的纵坐标为-1,判断y2=(3- )xn+2是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。
解:依题意,得
解得n=-1,
∴ y1=-3x-1,
y2=(3- )x, y2是正比例函数;
y1=-3x-1的图象经过第二、三、四象限,y1随x的增大而减小;
y2=(3- )x的图象经过第一、三象限,y2随x的增大而增大。
说明:由于一次函数的解析式含有待定系数n,故求解析式的关键是构造关于n的方程,此题利用“一次函数解析式的常数项就是图象与y轴交点纵坐标”来构造方程。
例2.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,求正比例函数和一次函数的解析式。
分析:自画草图如下:
解:设正比例函数y=kx,
一次函数y=ax+b,
∵ 点B在第三象限,横坐标为-2,
设B(-2,yB),其中yB<0,
∵ =6,
∴ AO•|yB|=6,
∴ yB=-2,
把点B(-2,-2)代入正比例函数y=kx,得k=1,
把点A(-6,0)、B(-2,-2)代入y=ax+b,

解得:

∴ y=x, y=- x-3即所求。

说明:(1)此例需要利用正比例函数、一次函数定义写出含待定系数的结构式,注意两个函数中的系数要用不同字母表示;
(2)此例需要把条件(面积)转化为点B的坐标。这个转化实质含有两步:一是利用面积公式 AO•

BD=6(过点B作BD⊥AO于D)计算出线段长BD=2,再利用|yB|=BD及点B在第三象限计算出yB=-2。若去掉第三象限的条件,想一想点B的位置有几种可能,结果会有什么变化?(答:有两种可能,点B可能在第二象限(-2,2),结果增加一组y=-x, y= (x+3)。 (有答案,自己去看吧)

1 全等三角形的对应边、对应角相等 ­

2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 ­

3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 ­

4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 ­

5 边边边公理(SSS) 有三边对应相等的两个三角形全等 ­

6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 ­

7 定理1 在角的平分线上的点到这个角的两边的距离相等 ­

8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 ­

9 角的平分线是到角的两边距离相等的所有点的集合 ­

10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) ­

21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 ­

22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 ­

23 推论3 等边三角形的各角都相等,并且每一个角都等于60° ­

24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) ­

25 推论1 三个角都相等的三角形是等边三角形 ­

26 推论 2 有一个角等于60°的等腰三角形是等边三角形 ­

27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 ­

28 直角三角形斜边上的中线等于斜边上的一半 ­

29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ­

30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 ­

31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 ­

32 定理1 关于某条直线对称的两个图形是全等形 ­

33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 ­

34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 ­

35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 ­

36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 ­

37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 ­

38定理 四边形的内角和等于360° ­

39四边形的外角和等于360° ­

40多边形内角和定理 n边形的内角的和等于(n-2)×180° ­

41推论 任意多边的外角和等于360° ­

42平行四边形性质定理1 平行四边形的对角相等 ­

43平行四边形性质定理2 平行四边形的对边相等 ­

44推论 夹在两条平行线间的平行线段相等 ­

45平行四边形性质定理3 平行四边形的对角线互相平分 ­

46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 ­

47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 ­

48平行四边形判定定理3 对角线互相平分的四边形是平行四边形 ­

49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 ­

50矩形性质定理1 矩形的四个角都是直角 ­

51矩形性质定理2 矩形的对角线相等 ­

52矩形判定定理1 有三个角是直角的四边形是矩形 ­

53矩形判定定理2 对角线相等的平行四边形是矩形 ­

54菱形性质定理1 菱形的四条边都相等 ­

55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 ­

56菱形面积=对角线乘积的一半,即S=(a×b)÷2 ­

57菱形判定定理1 四边都相等的四边形是菱形 ­

58菱形判定定理2 对角线互相垂直的平行四边形是菱形 ­

59正方形性质定理1 正方形的四个角都是直角,四条边都相等 ­

60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 ­

61定理1 关于中心对称的两个图形是全等的 ­

62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 ­

63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 ­

点平分,那么这两个图形关于这一点对称 ­

64等腰梯形性质定理 等腰梯形在同一底上的两个角相等 ­

65等腰梯形的两条对角线相等 ­

66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 ­

67对角线相等的梯形是等腰梯形 ­

68平行线等分线段定理 如果一组平行线在一条直线上截得的线段 ­

相等,那么在其他直线上截得的线段也相等 ­

69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 ­

70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 ­

三边 ­

71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 ­

的一半 ­

72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 ­

一半 L=(a+b)÷2 S=L×h ­

㈩ 苏教版八年级上数学期末复习知识点总结+例题(完美版)

全等三角形

一、知识框架: