当前位置:首页 » 基础知识 » 第二单元数学初一知识点
扩展阅读
埃及喵动漫为什么会火 2025-01-18 09:59:22
儿童学钢琴学什么教材 2025-01-18 09:57:15

第二单元数学初一知识点

发布时间: 2022-07-19 08:14:57

‘壹’ 初一数学的知识点

不同版本学的内容不同,你学的什么版本?至于学的哪些知识点,你看一下目录就明白了。

‘贰’ 七年级数学上册第2章知识重点总结

有理数运算知识点分析

1、有理数的加法是有理数运算的重点,它比算术中的加法运算复杂,而且容易出错。

(1)有理数加法法则是进行有理数加法的依据,进行加法运算时,首先判断两个加数的符号,是同号?是异号或是有一个零,从而来确定用哪一条法则。求和时,先确定和的符号,然后利用绝对值,把有理数转化为非负数按小学加法或减法求大小,再写出结果。

(2)有理数的加法满足交换律、结合律、进行有理数的加法运算时,可以任意交换加数的位置,也可以先把其中的几个数加起来,利用加法运算律,使计算简便。

2、有理数的减法
(1)把相反数的概念应用在有理数的减法法则中,就可把减法运算转代为加法运算,所以在有理数中,加减法是统一的。

(2)在算术里做减法运算时,被减数一定要大于或等于减数。现在学了有理数减法法则以后,因为有理数的加法运算算是可以进行的,所以有理数减法运算也总是可以进行的。

3、有理数的加减混合运算:

(1)由于减法可以转化为加法,因此加减混合运算,都可以统一成加法运算。像这样把加地统一写成加法的式子,叫做代数和。代数和与算术的和的最主要区别就是代数和中的加数可以是负数。

(2)在一个代数和中,加号可以省略不写,即(-10)+(+3)+(+4)+(+5)+(+2)可以写成-10+3-4+5+2,读作 “负10、正3、负4、正5、正2的和”,又可以读作“负10加2减4加5加2”。可见在有理数的加减运算中,“+”“-”号可以当作运算符号,也可以当作性质符号。

(3)因为有理数加减法呆统一成加法,所以进行有理数的加减混合运算时,可以运用加法交换律与结合律,但要注意在交换加数的位置时,要连同前面的符号一起交换。

4、有理数的乘法

(1)有理数做乘法运算时,若其中有一个数为零,则其积也为零。若两个不为零的数相乘,则先确定积的符号(这与小学是不同的),然后转化为绝对值相乘(即利用小的乘法运算)。

(2)小学学过的乘法运算律,在有理数内仍然适用。

5、有理数的除法

(1)倒数

小时已学过“乘积是1的两个数互为倒数”,在有理数范围内仍然这样定义。若两个有理数互为倒数,则符号相同,绝对值乘积为1。

注意:零没有倒数,1的倒数是1,=1的倒数是-1。

(2)由有理数的除法法则知,除法可以转化为乘法,即在有理数中乘除法是统一的。

6、有理数的乘方:

(1)乘方是求相同因数的积的运算,它是特殊的乘法,所以乘方运算的结果幂的符号和有理数乘法的确定符号的方法完全相同。

(2)底数为负数是,乘方运算容易写错,并且容易出现符号的错误,如(-3)^4读作(负3的四次方),不要忘记括号,否则写成-3^4表示3的四次方的相反数,或读作“负的3的四次方”表示3的四次方的相反烽,要注意二者的意义上的区别。

(3)注意分数的乘方的写法,也要加小括号。

(4)单独一个数可以看作这个数本身的一次方(次数1省略不写)。

7、有理数的混合运算:

有理数的运算,一般从高级到低级进行。在同一级运算中,按照从左到右的顺序运算。有括号时,括号优先一般从里向外进行。

8、近似数和有效数字:

(1)一个近似数的位数与精确度有关,不能随意添上或去掉末位的零。如2.8和2.80不一样,前者精确到十分位,报者精确到百分位。

(2)有效数字的个数是从左连第一个不是零的数字起,从左到右到精确到的那一位止,这中间的所有数字都包括在内,不管是0还是有重复的数字都不能漏掉。如0.05008是经四舍五入后得到的近似数。它左边第一个不为0的数是5,精确到的数位上的数字是8,那么5和8之间的5,0,0,8就都是它的有效数字。

(3)精确度有两种形式,一是精确到哪一位,二是保留几个有效数字。

‘叁’ 初一数学全部知识点有哪些

1、正数与负数

在以前学过的0以外的数前面加上负号“—”的数叫负数。

与负数具有相反意义,即以前学过的0以外的数叫做正数。

2、一元一次方程

只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数 不是零的整式方程是一元一次方程。

3、一元一次方程的标准形式:ax+b=0(x 是未知数,a、b 是已知数,且 a≠0)。

4、等式的性质

等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

5、角的比较与运算

如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。

如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。

‘肆’ 初一下数学知识点有哪些

初一下数学知识点如下:

1、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

2、两条平行线被第三条直线所截,同旁内角互补(两直线平行,同旁内角互补)。 判断一件事情的语句,叫做命题。

3、无限不循环小数又叫做无理数。

4、规定了原点、正方向、单位长度的直线叫做数轴。

5、减去一个数,等于加这个数的相反数。

‘伍’ 初一数学的第二章的重要的知识点

单项式的概念,多项式的概念,整式的概念,整式的加减同类项,合并同类项,去括号与填括号

‘陆’ 初一数学知识点有哪些

第一节整数和整除

1、整数和整除的意义。

2、因数和倍数。

3、能被2、5整除的数。

第二节分解素因数

1、素数、合数与分解素因数。

2、公因数与最大公因数。

3、公倍数与最小公倍数。

第三节分数的意义和性质

1、分数与除法。

2、分数的基本性质。

3、分数的大小比较。

第四节分数的运算

1、分数的加法。

2、分数的乘法。

3、分数的除法。

4、分数与小数的互化。

第五节比和比例

1、比的意义。

2、比的基本性质。

3、比例。

第六节百分比

1、百分比的意义。

2、百分比的应用。

3、等可能事件。

第七节圆的周长和弧长

1、圆的周长。

2、弧长。

第八节圆和扇形面积

1、圆的面积。

2、扇形的面积。

‘柒’ 初一数学全部知识点分别是

初一数学知识点:

1、单项式:数字与字母的积,叫做单项式。

2、多项式:几个单项式的和,叫做多项式。

3、整式:单项式和多项式统称整式。

4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。

6、余角:两个角的和为90度,这两个角叫做互为余角。

7、补角:两个角的和为180度,这两个角叫做互为补角。

8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

9、同位角:在“三线八角”中,位置相同的角,就是同位角。

10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

17、全等图形:两个能够重合的图形称为全等图形。

18、变量:变化的数量,就叫变量。

‘捌’ 请具体总结初一上学期数学第二章有理数的所有知识点,一定要详细详细,准确准确。

《有理数》知识点复习
知识网络:
知识点 知识链 课标要求及自我体会 处理方式
与小学 与初中 与高中
正数 小学学过整数、分数(小数)的知识,即正有理数及0的知识,还学过用字母表示数。 将小学中的“算术数”扩充到有理数 ①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.
②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).
③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).
④理解有理数的运算律,并能运用运算律简化运算.
⑤能运用有理数的运算解决简单的问题.
⑥能对含有较大数字的信息作出合理的解释和推断.
⑦了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示).
负数 利用具有相反意义的量引入负数
有理数
数轴 为学习平面直角坐标系做准备;数形结合的初步认识及应用 通过描述位置的问题引出,并让学生通过温度计加深对数轴的认识,进而具体讲述
绝对值 借助数轴
相反数 借助数轴。分别利用几何意义和代数意义让学生理解
倒数 乘积为1的两个数 把倒数的范围扩充到有理数范围内 小学知识迁移
有理数加法法则 将两个数合并为一个数的运算 初中阶段运算的基础 首先通过实例明确有理数加法的意义;引入有理数加法的法则,接着举例说明小学阶段学过的加法运算律对有理数加法同样适用。在此基础上,从有理数减法的意义得出有理数减法法则。进一步根据减法法则,可以把加减法运算统一成加法。
有理数减法法则
有理数乘法法则 借助数轴研究有理数的乘法,引入有理数乘法的法则并通过例子说明,如何利用法则进行计算。然后从具体运算的例子出发,指出乘法的运算律对有理数同样适用。在乘法之后,从有理数除法的意义出发,结合具体例子引入有理数除法的法则,并通过例子说明如何利用法则进行计算。
有理数除法法则
乘方 在小学阶段接触过平方、立方 幂的运算的基础 幂函数的基础 结合计算正方形面积、正方体体积的实例引出乘方的概念
有理数混合运算 小学四则混合运算的顺序是基础 有理数的运算是数学中其他运算的基础,初中有理数运算在前两个学段的基础上增加了乘方的运算。也是后面有关整式运算的基础。 在复习小学阶段数的四则运算顺序的基础上,结合新学习的乘方,按照先乘方,再乘除,最后加减的运算顺序进行。
科学计数法 为较大数字和较小的数据的表示提供了一种更科学的方法

‘玖’ 初一数学知识点有哪些

初一数学知识点如下:

1、0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数。

2、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

3、在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成 的形式。

4、有理数中1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

5、数轴的作用:所有的有理数都可以用数轴上的点来表达。

‘拾’ 初一数学知识要点有哪些

初一数学概念
实数:
—有理数与无理数统称为实数。
有理数:
整数和分数统称为有理数。
无理数:
无理数是指无限不循环小数。
自然数:
表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
数轴:
规定了圆点、正方向和单位长度的直线叫做数轴。
相反数:
符号不同的两个数互为相反数。
倒数:
乘积是1的两个数互为倒数。
绝对值:
数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

数学定理公式
有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
⑵减法法则:减去一个数,等于加上这个数的相反数。
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。
数学第一章相交线

一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。

二、对顶角:是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。

对顶角的性质:对顶角相等。

三、垂直

1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直。其中一条叫做另一条的垂线,它们的交点叫做垂足。记做a⊥b

垂直是相交的一种特殊情形。

2、垂线的性质:

①过一点有且只有一条直线与已知直线垂直;

②连接直线外一点与直线上各点的所有线段中,垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

3、画法:①一靠(已知直线)②二过(定点)③三画(垂线)

4、空间的垂直关系

四、平行线

1、 平行线:在同一平面内,不相交的两条直线叫做平行线。记做a‖b

2、 “三线八角”:两条直线被第三条直线所截形成的

① 同位角:“同方同位”即在两条直线的上方或下方,在第三条直线的同一侧。

② 内错角:“之间两侧”即在两条直线之间,在第三条直线的两侧。

③ 同旁内角“之间同旁”即在两条直线之间,在第三条直线的同旁。

3、 平行公理:经过直线外一点,有且只有一条直线与这条直线平行

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4、 平行线的判定方法

① 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

② 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;

③ 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;

④ 平行于同一条直线的两条直线平行;

⑤ 垂直于同一条直线的两条直线平行。

5、 平行线的性质:

①两条平行线被第三条直线所截,同位角相等;

②两条平行线被第三条直线所截,内错角相等;

③两条平行线被第三条直线所截,同旁内角互补。

6、 两条平行线的距离:同时垂直于两条平行线并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。

7、 命题:判断一件事情的语句,叫做命题,由题设和结论两部分组成。

五平移

1、平移:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

说明:①、平移不改变图形的形状和大小,改变图形的位置;②“将一个图形沿某个方向移动一定的距离”意味着“图形上的每一点都沿着同一方向移动了相同的距离 ”这也是判断一种运动是否为平移的关键。③图形平移的方向,不一定是水平的

2、平移的性质:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等。 初一数学知识点归纳 第一单元 位置1、 能在具体的情景中,确定位置的方法,说出某一物体的位置。2、 用“数对”表示位置,对应列上的数字在前,行上的数字在后,记为(x,y)。3、 “数对”表示位置,易错的是(x,0),(0,y)。4、 认识方位,上北下南左西右东,两个事物一个在另一个的方向。 第二单元 分数乘法一、分数乘整数1、 意义:表示几个相同分数相加。2、 计算方法:(1)、分母不变,分子和整数相乘。 (2)、当分母和整数可以约分时,要先约分。二、分数乘分数1、意义:就是一个分数的几分之几。2、计算方法:(1)、分子乘分子,分母乘分母。。 (2)、分子和分母有能约分的要约分,再计算。三、运算律的运用1、整数乘法的运算律对于分数乘法同样适用。2、应用运算律简便计算。四、倒数1、乘积是1的两个数互为倒数。2、求法:把数的分子和分母的位置颠倒。3、1的倒数就是1本身,0没有倒数。五、解决问题1、求一个数的几分之几。列式:标准量×几分之几2、求一个数多(或少)几分之几。列式:标准量×(1±几分之几) 标准量土标准量×几分之几3、 求一个数占另一个数的几分之几。列式:几分之几4、 用画线段图分析分数乘法应用题的数量关系。 第三单元 分数除法一、 类型1、 分数除以整数,表示把分数平均分成整数份。2、 分数除以分数,表示b/a中有多少个d/c。3、 整数除以分数,表示a中有多少个c/d。二、 计算方法:除以一个数等于乘这个数的倒数(0除外)。三、 分数除法的意义与整数除法相同,都是乘法的逆运算。四、 分数混合运算顺序,简便算法。五、 解决问题1、 甲数是乙数的几分之几。列式:甲/乙。2、 乙数的几分之几等于甲数。列式:甲数=乙数×几分之几。乙数=甲数÷几分之几。3、 甲数比乙数多(或少)几分之几。列式:甲数=乙数×(1土几分之几)甲数=乙数土乙数×几分之几。标准量:“比”字后面的为标准量。4、 若求长方形的长是宽的几倍:就是求长和宽的比:长/宽。若求长方形的宽是长的几分之几,就是求长和宽的比:长/宽。六、 比的意义:用两个数相除,又叫两个数的比,符号“:”比的结果叫做比值。1、 在a:b中,a叫比的前项,b叫比的后项。2、 比与除法和分数的关系。a:b=a÷b=a/b。3、 求比值两项的单位名称要统一,比值是一个数,没有单位。4、 比的基本性质a:b=am:bma:b=a÷m:b÷m5、 比化成最简整数比:(1) 有分数,前项和后项都乘分母的最小公倍数。(2) 无分数,前项和后项都除以最大公约数。(3) 有小数,可先化为整数或分数。6、解决问题总量×被分份数/总份数=要求的量 第四单元圆一、 圆的认识,由曲线围成,外形美,易滚动。1、 圆心,用o表示。2、 半径,连接圆心和圆上任意一点的线段叫半径,用r表示。3、 直径,通过圆心并且两端都在圆上的线段叫直径,用d表示。4、 半径和直径的关系。5、 轴对称图形及对称轴,圆又无数条对称轴,是直径所在的直线。二、 圆的周长1、 圆周率,是周长与直径的比,是无限不循环小数。2、 公式:c=πd或c=2πr3、 已知圆的周长求半径和直径。三、 圆的面积1、公式S=πR22、已知圆的半径、直径或周长能分别求圆的面积。3、环形面积公式S=πR2-πr24、扇形、弧、圆心角。5、在周长一定的情况下,圆的面积最大。在面积一定的情况下,圆的周长最短。6、 确定起跑线的位置。 第五单元百分数1、 百分数的写法。百分号“%”2、 百分数的意义:表示一个数是另一个数的百分之几。3、 百分数与分数的区别:分数既可以表示一个具体的数,又可以表示两个数之间的关系。百分数表示一个数是另一个数的百分之几,只表示两个数的关系,不是具体的数,不能写单位名称。另外百分数的分子可以是小数和大于一百的数。4、 百分数与分数、小数的互化。百分数化为小数:去掉百分号,小数点向左移动两位;小数化为百分数:小数点向右移动两位,添上百分号;百分数化为分数:可先化为分母是一百的分数,能约分的要约分;分数化为百分数:先把分数化为小数,再化为百分数。5、解决问题①、达标率,发芽率的公式。(甲占乙的百分之几。)达标率=达标的人数/总人数×100%发芽率=发芽的数量/种子的总数×100%②、甲比乙少(或多)百分之几。确定单位“1”。③、甲增加了百分之几是多少?增加了多少?6、折扣,表示十分之几,也就是百分之几十。折扣问题求实求一个数的百分之几是多少的问题。7、纳税。①、根据国家各种税法的规定,按照一定的比率,把集体或个人的收入的一部分缴纳给国家叫做纳税。②、缴纳的税款叫做应纳税额。按一定的比率纳税叫做税率。③、税率=应纳税款/各种收入×100%应纳税款=税率×各种收入。8、利率。①、存款的好处。②、利息=本金×利率×时间③、取款=本金+利息-利息税(本金+税后利息)。 第六单元统计一、 扇形统计图1、 能反映部分量同总量之间的关系2、 用整个圆表示总量,用各个扇形表示各部分数量占总量的百分之几。3、 利用扇形统计图计算分析。二、 合理存款1、 教育储蓄。2、 国债利率3、 设计存款方案4、 合理存款 第七单元数学广角鸡兔同笼问题利用解方程的方法解决问题。