当前位置:首页 » 基础知识 » 考研数学导数知识点
扩展阅读
维坊古城明数学知识 2024-11-07 14:22:08
哪个动漫里有天狗 2024-11-07 14:16:49

考研数学导数知识点

发布时间: 2022-07-18 22:42:37

Ⅰ 考研数学三具体内容,都要考哪些知识。

考研数学三大纲包括微积分、线性代数、概率论与数理统计。均要求理解概念,掌握表示法,会建立应用问题的函数关系。
考试内容:
一、微积分
函数、极限、连续
考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性.单调性.周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.了解数列极限和函数极限(包括左极限与右极限)的概念.
6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.
7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.
8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.
二、一元函数微分学
考试要求
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.
2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数
会求反函数与隐函数的导数.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.
5.理解罗尔(Rolle)定理.拉格朗日(
Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.
6.会用洛必达法则求极限.
7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间
内,设函数具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线.
9.会描述简单函数的图形.
三、一元函数积分学
考试要求
1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.
2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.
3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.
4.了解反常积分的概念,会计算反常积分.
四、多元函数微积分学
考试要求
1.了解多元函数的概念,了解二元函数的几何意义.
2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.
3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.
5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.
五、无穷级数
考试要求
1.了解级数的收敛与发散.收敛级数的和的概念.
2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.
3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.
4.会求幂级数的收敛半径、收敛区间及收敛域.
5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.
6.了解 e的x次方, sin x, cos x, ln(1+x)及(1+x)的a 次方的麦克劳林(Maclaurin)展开式.
六、常微分方程与差分方程
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.
3.会解二阶常系数齐次线性微分方程.
4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.
5.了解差分与差分方程及其通解与特解等概念.
6.了解一阶常系数线性差分方程的求解方法.
7.会用微分方程求解简单的经济应用问题.
七、线性代数
行列式
考试内容:行列式的概念和基本性质
行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
八、矩阵
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.
5.了解分块矩阵的概念,掌握分块矩阵的运算法则.
九、向量
考试要求
1.了解向量的概念,掌握向量的加法和数乘运算法则.
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
十、线性方程组
考试要求
1.会用克莱姆法则解线性方程组.
2.掌握非齐次线性方程组有解和无解的判定方法.
3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.
十一、矩阵的特征值和特征向量
考试要求
1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.
2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.
十二、二次型
考试要求
1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.
2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.
3.理解正定二次型.正定矩阵的概念,并掌握其判别法.
十三、概率统计
随机事件和概率
考试要求
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.
十四、随机变量及其分布
考试要求
.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布
、几何分布、超几何分布、泊松(Poisson)分布 及其应用.
3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布
、指数分布及其应用,其中参数为 的指数分布 的概率密度为
5.会求随机变量函数的分布.
十五、多维随机变量及其分布
考试要求
1.理解多维随机变量的分布函数的概念和基本性质.
2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.
3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.
4.掌握二维均匀分布和二维正态分布
,理解其中参数的概率意义.
5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.
十六、随机变量的数字特征
考试要求
理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.
2.会求随机变量函数的数学期望.
3.了解切比雪夫不等式.
十七、大数定律和中心极限定理
考试要求
1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.
十八、数理统计的基本概念
考试要求
1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为
2.了解产生 变量、 变量和 变量的典型模式;了解标准正态分布、 分布、分布和分布得上侧 分位数,会查相应的数值表.
3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.
4.了解经验分布函数的概念和性质.
十九、参数估计
考试内容:点估计的概念 估计量与估计值 矩估计法
最大似然估计法
考试要求
1.了解参数的点估计、估计量与估计值的概念.
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.

Ⅱ 考研数学一的重点在哪

▶极限
首先是极限。极限在数一中还是占着很大的比重,考试的只要考查方式就是求极限,还有就是一些单调有界定理的使用。
导数和微分
导数的考查方式主要还是和其它的知识点相结合,很少直接给你一个函数让你求导数。例如不等式的证明,函数单调性,凹凸性的判断,二元函数的偏微分等等。换句话说,导数是一个基础。
中值定理
中值定理一般会两年至少考一次,多是以证明题的方式出现,而且常常和闭区间上的连续函数的性子相结合,以与罗尔定理为重点。
▶积分与不定积分
积分与不定积分是考试的重中之重,尤其是多元函数积分学更是每年的必考题型,平均一年会出两道大题,而且定积分、分段函数的积分、带绝对值的函数的积分等种种积分的求法都是重要的题型。
微分方程
微分方程中需要熟练掌握变量可分散的方程、齐次微分方程和一阶线性微分方程的求解方法,以及二阶常系数线性微分方程的求解,对于这些方程要能够判断方程类型,利用对应的求解方法,求解公式,能很快的求解。

Ⅲ 想学好考研数学必须先学会高中数学的哪些知识点

高中数学重点有什么?该怎样攻克?
高中数学重点内容还有很多.这些重点都是保持多年来的经验,他们分析过高考数学的题型,高中数学重点分为以下几个部分.

高中数学知识
一、函数和导数,函数可以说是整个高中数学的关键.在高中数学当中,每一个.板块都需要函数的引导.这是高中数学的一根纽带.在高考数学中,函数这些内容方只在30分左右,其中包括指数,对数,还有图像的变化.考察的内容,关键是以填空的形式,还有选择的形式,有的还有在解答题需要让你画一些图像来正确解答.
二、数列,数列也是高中的重点内容.其实数列在初中的时候我们就经历过,我们就学过,只不过数列在高中这个阶段也是重要的一个版块儿.他可以让你算出钱一个数列的数值都是多少?还有等比数列,等差数列,比较好一点的就是这些不用画图,像你就可以算出来这一个板块还是比较简单,只要你记住一些死公式,往里边套就好.
三、三角函数,三角函数也是高中数学重点内容.三角函数的考查一般就是在诱导公式还有俩差公式或者就是证明求解.还有图像的分析会让你.算出图像平移的变化,还有对称的变化,还有一些单调性,单调区间周期性.最后一个对函数的考查就是用实际例题几何的综合.
四、几何函数综合,这种综合题也是高考比较常见的题型,通常也在二三十分左右梯形,也就是考察一些线性的规划,还有圆锥的定义圆锥,圆柱都是考察的重点.还会让你算一些面积,表面积一些体积.还有侧面积或者切去某块儿部分让你算出它的面积.
五、向量,向量这个板块儿是必修科目当中最后一个重点板块儿.向量我们在刚开始接触的时候,我们会觉得它是一条射线.关键的就是它可以精确地算出圆柱和圆锥的位置关系还可以算出他们的加减法,但是简答都是会有一定的位置关系和数量,关键都是以这种计算为主.

向量讲解
其实高中数学重点就是在必修的里面.必修是每个高中生都必须学习的,不管是分不分文理科,他们都是会学习的.很多重点都是在必修里面,然而在选秀当中就是讲一些统计之类的问题,这都是我们在生活当中就会学到的,所以这些都不是重点,重中之重就是在必修的课本当中.

Ⅳ 考研是数二的大题都考哪块的知识点

数二只考高数和线性代数 。
从高等数学开始,
第一章极限和连续,重中之重是求极限这个问题。
第二章一元函数微分学,这部分内容两个重点,第一个重点是导数的计算和应用。
第三章一元函数的积分学,概括来说一个重点,就是积分的计算和应用。
第四章不是重点。
第五章多元函数微分学,第一个重点多元复合函数求偏导,多元隐函数求偏导。
第六章多元函数积分学,这一部分主要两个重点,第一个重点二重积分的计算,另外一个重点是数一的同学要考的,考三重积分,一类线积分、二类线积分、一类面积分、二类面积分、以及相关的格林公式、高斯公式、斯托克斯公式,这是数一同学的重点。
第七章无穷级数,重点给大家归纳一下,第一级数收敛的性质与判定。
第八章微分方程,第一个重点是一阶微分方程,今年考了一个一阶线性非齐次微分方程求解的填空题。第二个重点是二阶常系数线性微分方程。

线性代数第一章行列式,这一块唯一的重点是行列式的计算。
第二章矩阵,同学们重点把握住矩阵的秩、逆、伴随、初等变换,初等矩阵、分块矩阵。
第三章向量,可以分为三个重点,第一个是向量的线性表示,第二个是线性相关,线性无关,第三向量组的极大线性无关组及秩。
第四章线性方程组,第一个重点是线性方程组解的判定问题,第二解的性质问题,第三解的结构问题。
第五章特征值、特征向量,也是三个重点,第一特征值、特征向量的定义、性质、求法。第二矩阵的相似对角化。第三个重点实对称矩阵的性质与正交相似对角化。特别是实对称矩阵的性质与正交相似对角化,可以说每年必考。
第六章二次型,第一个重点是二次型化为标准形,同学们必须掌握两种方法,第一个是配方法,第二个是正交变换法。第二个重点是二次型正定的判定。
关于概率统计,第一章事件与概率,比较重要的就是三大概率公式。
第二章一维随机变量及其分布,这章重点分两块,第一块是一维随机变量的分布,包括分布函数,分布率,密度函数。第二个重点是八个重要分布,包括五个离散型的,三个连续型。这章特别喜欢出小题。
第三章二维维随机变量及其分布,第一个是二维随机变量的分布,包括联合分布,边缘分布,条件分布。另一个重点是二维随机变量函数的分布。这一章一定考大题,同学们必须重点关注!
第四章随机变量的数字特征,大家主要掌握随机变量的期望、方差、协方差、相关系数的定义和性质。
三、四章是概率统计的重点中的重点。另外比较重要的是第六章第七章。
第六章统计初步,大家主要掌握正态总体的三个抽样分布及八大统计量。 第七章参数估计,重点是矩估计与最大似然估计。本章考的话一般都是大题,尤其是数一的同学,特别喜欢考这章的大题。

Ⅳ 2022考研数学复习易错知识点

一、几个易混淆的考研数学概念


连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系是怎么样的?存在极 限,导函数连续,左连续,右连续,左极 限,右极 限,左导数,右导数,导函数的左极 限,导函数的右极 限。


二、罗尔定理


设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f‘(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,①f(x)在[a,b]上连续表明曲线连通端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(直线AB)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f’(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。


三、泰勒公式展开的应用专题


相信很多同学看到泰勒公式就哆嗦,因为乍一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在搞明白以下几点后,这样的症状就能够消失了。1.什么情况下要进行泰勒展开;2.以哪一点为中心进行展开;3.把谁展开;4.展开到几阶?


四、应用多次中值定理的专题


大部分的考研数学题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映老师出这题考哪几个中值定理,敏感性是靠自己多练习综合题培养出来的。比如经常去复习,那样对中值定理的题目早已没有那种刚学高数时的害怕之极。


五、对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用


这类考研数学题型几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,因为你做出来了以为以后就一定会在相似的题目中用,其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次轮到的时候或许就是考场上了,你可能顿时苦思冥想,最终还是选择了最傻的办法,浪费了宝贵时间。说这些其实就是说明,考场上的正常或超常发挥是建立在平时踏实做,见识广,严要求的基础上。


2022考研数学复习易错知识点小编就说到这里了,更多关于考研报名入口,报名时间,考研成绩查询,报名费用,考研准考证打印入口及时间等问题,小编会及时更新。希望各位考生都能进入自己的理想院校。大家一定要掌握备考技巧。

Ⅵ 如何掌握考研数学知识点

高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。具体说来,大家需要重点掌握的知识点有几以下几点:
1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。
2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。
3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。
4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。

Ⅶ 研究生入学考试数学二的知识点有哪些

下届的还没出来,但是每年差不大,知识点就这几个,只是有些考的比较深入
高等数学
一、函数、极限、连续
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

二、一元函数微分学
考试内容
导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径
考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.
6.掌握用洛必达法则求未定式极限的方法.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.

三、一元函数积分学
考试内容
原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用
考试要求
1.理解原函数的概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式和简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.
5.了解反常积分的概念,会计算反常积分.
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.

四、多元函数微积分学
考试内容
多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算
考试要求
1.了解多元函数的概念,了解二元函数的几何意义.
2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.
3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.
5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).

五、常微分方程
考试内容
常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.
3.会用降阶法解下列形式的微分方程: 和 .
4.理解二阶线性微分方程解的性质及解的结构定理.
5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
7.会用微分方程解决一些简单的应用问题.
线性代数
一、行列式
考试内容
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

二、矩阵
考试内容
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
5.了解分块矩阵及其运算.

三、向量
考试内容
向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的的正交规范化方法
考试要求
1.理解 维向量、向量的线性组合与线性表示的概念.
2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.
5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.

四、线性方程组
考试内容
线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解
考试要求
1.会用克莱姆法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.
4.理解非齐次线性方程组的解的结构及通解的概念.
5.会用初等行变换求解线性方程组.

五、矩阵的特征值和特征向量
考试内容
矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵
考试要求
1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.
2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.
3.理解实对称矩阵的特征值和特征向量的性质.

六、二次型
考试内容
二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求
1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.
2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法.

Ⅷ 考研数学一的知识点归纳

高数部分
考研数学一高数各部分常见题型和知识点。
一. 函数、极限与连续
1 求分段函数的复合函数;
2 求极限或已知极限确定原式中的常数;
3讨论函数的连续性,判断间断点的类型;
4 无穷小阶的比较;
5讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实 根。

二.一元函数微分学
1 求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;
2利用洛比达法则求不定式极限;
3 讨论函数极值,方程的根,证明函数不等式;
4 利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足......”,此类问题证明经常需要构造辅助函数;
5 几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;
6 利用导数研究函数性态和描绘函数图形,求曲线渐近线。
三.一元函数积分学
1 计算题:计算不定积分、定积分及广义积分;
2关于变上限积分的题:如求导、求极限等
3 有关积分中值定理和积分性质的证明题;
4定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,
压力,引力,变力作功等;
5 综合性试题.
四.向量代数和空间解析几何
1计算题:求向量的数量积,向量积及混合积;
2 求直线方程,平面方程;
3判定平面与直线间平行、垂直的关系,求夹角;
4 建立旋转面的方程;
5 与多元函数微分学在几何上的应用或与线性代数相关联的题目。
五.多元函数的微分学
1 判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;
2 求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;
3 求二元、三元函数的方向导数和梯度;
4 求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;
5多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。
六.多元函数的积分学
1二重、三重积分在各种坐标下的计算,累次积分交换次序;
2第一型曲线积分、曲面积分计算;
3 第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;
4第二型(对坐标)曲面积分的计算,高斯公式及其应用;
5 梯度、散度、旋度的综合计算;
6 重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。
七.无穷级数
1 判定数项级数的收敛、发散、绝对收敛、条件收敛;
2 求幂级数的收敛半径,收敛域;
3 求幂级数的和函数或求数项级数的和;
4将函数展开为幂级数(包括写出收敛域);
5 将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);
6综合证明题。
八.微分方程
1 求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;
2 求解可降阶方程;
3 求线性常系数齐次和非齐次方程的特解或通解;
4 根据实际问题或给定的条件建立微分方程并求解;
5 综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

Ⅸ 宇哥,请问考研高等数学中有哪些定理和公式的证明值得注意

中值定理,是反映 函数与 导数之间联系的重要定理,也是 微积分学的理论基础,在许多方面它都有重要的作用,下面分享考研数学中值定理证明思路,希望可以帮助大家。
一、具体考点分析
首先我们必须弄清楚这块证明需要的理论基础是什么,相当于我们的工具,那需要哪些工具呢?
第一:闭区间连续函数的性质。
最值定理:闭区间连续函数的必有最大值和最小值。
推论:有界性(闭区间连续函数必有界)。
介值定理:闭区间连续函数在最大值和最小值之间中任意一个数,都可以在区间上找到一点,使得这一点的函数值与之相对应。
零点定理:闭区间连续函数,区间端点函数值符号相异,则区间内必有一点函数值为零。
第二:微分中值定理(一个引理,三个定理)
费马引理:函数f(x)在点ξ的某邻域U(ξ)内有定义,并且在ξ处可导,如果对于任意的x∈U(ξ),都有f(x)≤f(ξ) (或f(x)≥f(ξ) ),那么f'(ξ)=0。
罗尔定理:如果函数f(x)满足:
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导;
在区间端点处的函数值相等,即f(a)=f(b
那么在(a,b)内至少有一点ξ(a<ξ,使得 f?(ξ)="0.
几何上,罗尔定理的条件表示,曲线弧 (方程为 )是一条连续的曲线弧 ,除端点外处处有不垂直于x轴的切线,且两端点的纵坐标相等。而定理结论表明:
弧上至少有一点 ,曲线在该点切线是水平的。
拉格朗日中值定理:如果函数f(x)满足:
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导;
在区间端点处的函数值相等,即f(a)=f(b),
那么在(a,b)内至少有一点ξ(a<ξ
加强版:如果函数 f(x) 在积分区间[a, b]上连续,则在 (a, b)上至少存在一个点 ξ,使下式成立

第四:变限积分求导定理: 如果函数f(x)在区间[a,b]上连续,则积分变上限函数在[a,b]上具有导数,并且导数为:

第五:牛顿--莱布尼茨公式:如果函数f(x) 在区间[a,b] 上连续,并且存在原函数F(x) ,则

以上定理要求理解并掌握定理内容和相应证明过程。
二、注意事项
针对上文中具体的考点,佟老师再给出几点注意事项,这几个注意事项也是在证明题中的"小信号",希望大家理解清楚并掌握:
1. 所有定理中只有介值定理和积分中值定理中的ξ所属区间是闭区间。
2. 拉格朗日中值定理是函数f(x)与导函数f'(x)之间的桥梁。
3. 积分中值定理是定积分与函数之间的桥梁。
4. 罗尔定理和拉格朗日中值定理处理的对象是一个函数,而柯西中值定理处理的对象是两个函数,如果结论中有两个函数,形式与柯西中值定理的形式类似,这时就要想到我们的柯西中值定理。
5. 积分中值定理的加强版若在定理证明中应用,必须先证明。
其次对于中值定理证明一般分为两大类题型:第一应用罗尔定理证明,也可又分为两小类:证明结论简单型和复杂型,简单型一般有证明f'(ξ)=0,f'(ξ)=k (k为任意常数),f'(ξ1)=g'(ξ2),f''(ξ)=0,f''(ξ)=g''(ξ),
像这样的结论一般只需要找罗尔定理的条件就可以了,一般罗尔定理的前两个条件题目均告知,只是要需找两个不同点的函数值相等,需找此条件一般会运用闭区间连续函数的性质、积分中值定理、拉格朗日中值定理、极限的性质、导数的定义等知识点。复杂型就是结论比较复杂,需要建立辅助函数,再使辅助函数满足罗尔定理的条件。辅助函数的建立一般借助于解微分方程的思想。第二就是存在两个点使之满足某表达式。这样的题目一般利用拉格朗日中值定理和柯西中值定理,处理思想把结论中相同字母放到等是一侧首先处理。
更多关于考研数学的内容请点击启道教育网考研数学。

Ⅹ 考研数学哪些章节或知识点

第一章:函数、极限、连续

考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限:

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求
1、理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系。
2、了解函数的有界性、单调性、周期性和奇偶性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形,了解初等函数的概念。
5、了解数列极限和函数极限(包括左极限与右极限)的概念。
6、了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。
7、理解无穷小的概念和基本性质。掌握无穷小的比较方法。了解无穷大量的概念及其与无穷小量的关系。
8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
9、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

第二章:一元函数微分学

考试内容
导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的微分法高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数的极值 函数单调性的判别 函数图形的XXXXX性、拐点及渐近线 函数图形的描绘函数的最大值与最小值
考试要求
1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。
2、掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数。
3、了解高阶导数的概念,会求简单函数的高阶导数。
4、了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。
5、理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理、了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用。
6、会用洛必达法则求极限。
7、掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用。
8、会用导数判断函数图形的XXXXX性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当时,f(x)的图形是凹的;当时,f(x)的图形是凸的),会求函数图形的拐点和渐近线。
9、会描述简单函数的图形。

第三章:一元函数积分学

考试内容
原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用
考试要求
1、理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握计算不定积分的换元积分法和分部积分法。
2、了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法。
3、会利用定积分计算平面图形的面积、旋转体的体积及函数的平均值,会利用定积分求解简单的经济应用问题。
4、了解反常积分的概念,会计算反常积分。

第四章:多元函数微积分学

考试内容
多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单的反常二重积分
考试要求
1、了解多元函数的概念,了解二元函数的几何意义。
2、了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。
3、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数。
4、了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决某些简单的应用题。
5、了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标)。了解无界区域上较简单的反常二重积分并会计算。

第五章:无穷级数

考试内容
常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式
考试要求
1、了解级数的收敛与发散、收敛级数的和的概念。
2、掌握级数的基本性质和级数收敛的必要条件,掌握几何级数及p级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。
3、了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,掌握交错级数的莱布尼茨判别法。
4、会求幂级数的收敛半径、收敛区间及收敛域。
5、了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数,并会由此求出某些数项级数的和。
6、掌握与的麦克劳林(Maclaurin)展开式,会用它们将简单函数间接展成幂级数。

第六章:常微分方程与差分方程

考试内容
常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程与差分方程的简单应用
考试要求
1、了解微分方程及其阶、解、通解、初始条件和特解等概念。
2、掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法。
3、会解二阶常系数齐次线性微分方程。
4、了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程。
5、了解差分与差分方程及其通解与特解等概念。
6、掌握一阶常系数线性差分方程的求解方法。
7、会应用微分方程和差分方程求解简单的经济应用问题。

线性代数

第一章:行列式

考试内容
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质。
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式。

第二章:矩阵

考试要求
1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义和性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质。
2、掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。
3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法。
5.了解分块矩阵的概念,掌握分块矩阵的运算法则。

第三章:向量

考试内容
向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线形无关向量组的正交规范化方法。
考试要求
1.了解向量的概念,掌握向量的加法和数乘运算法则。
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念。掌握向量组线性相关、线性无关的有关性质及判别法。
3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩。
4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系。
5.了解内积的概念、掌握线性无关向量组正交规范化的施密特(Schmidt)方法。

第四章:线性方程组

考试内容

线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系 非齐次线性方程组的通解
考试要求
1. 会用克莱姆法则解线性方程组。
2. 掌握非齐次线性方程组有解和无解的判定方法。
3. 理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法。
4. 理解非齐次线性方程组解的结构及通解的概念。
5. 掌握用初等行变换求解线性方程组的方法。

第五章:矩阵的特征值和特征向量

考试内容
矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵。
考试要求
1. 理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。
2. 理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。
3. 掌握实对称矩阵的特征值和特征向量的性质。

第六章:二次型

考试内容
二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求
1. 了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念。
2. 了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形。
3. 理解正定二次型、正定矩阵的概念,并掌握其判别法。

概率论与数理统计

第一章:随机事件和概率

考试内容
随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验
考试要求
1、了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。
2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等。
3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。

第二章:随机变量及其分布

考试内容
随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布
考试要求
1、理解随机变量的概念,理解分布函数的概念及性质;会计算与随机变量相联系的事件的概率。
2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布()、几何分布、超几何分布、泊松(Poisson)分布及其应用。
3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。
4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为


5、会求随机变量函数的分布。

第三章:多维随机变量的分布

考试内容
多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布
考试要求
1、理解多维随机变量的分布函数的概念和基本性质。
2、理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度。掌握两维随机变量的边缘分布和条件分布。
3、理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件;理解随机变量的不相关性与独立性的关系。
4、掌握二维均匀分布和二维正态分布,理解其中参数的概率意义。
5、会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布。