当前位置:首页 » 基础知识 » 数学初一人教版必考知识点
扩展阅读
没有任何基础学什么 2024-11-07 22:39:31
qq皮肤怎么设置经典版 2024-11-07 22:37:31
三年级数学重要知识日记 2024-11-07 22:32:37

数学初一人教版必考知识点

发布时间: 2022-07-17 08:33:32

❶ 人教版数学初一上册第四章中考知识点有哪些

除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初一上册数学第四章图形认识初步知识点,希望对大家的学习有一定帮助。

【知识点归纳】

一、多姿多彩的图形

1.从实物中抽象出的各种图形统称为几何图形。

2.点、线、面、体

A.点:线和线相交的地方。

B.线:面和面相交的地方,线可分为直线、射线、线段

C.体:正方体、长方体、圆柱、球等都是几何体,几何体简称体。

D.面:包围着体的是面,面可分为平的面、曲的面。

二、直线、射线、线段

1.两点确定一条直线

2.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

3.两点之间,线段最短。

4.连接两点间的线段的长度,叫做这两点的距离。

三、角

1.有且只有一个角

2.把一个周角360等分,每一份就是一度的角,记做1°﹔把1度的角60等分,每一份叫做1分的角,记作1′﹔把1分的角60等分,每一份叫做1秒的角,记作1″。

3.角的运算:1周角=360°,1平角=180°,1°=60′,1′=60″

4.角的平分线:A.从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。

B.角平分线上的一点到角的两边距离相等。

四、线段、射线和直线的联系与区别

联系:线段、射线、直线是部分与整体的关系.线段向一方无限延长形成了射线,向两个方向无限延长得到了直线.直线上的两点和它们之间的部分组成线段,直线上的一点及其一旁的部分是射线,射线反向延长得直线.

小编为大家整理的初一上册数学第四章图形认识初步知识点相关内容大家一定要牢记,以便不断提高自己的数学成绩,祝大家学习愉快!

❷ 初一的所有知识点数学

1.数轴

(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

数轴的三要素:原点,单位长度,正方向.

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.

2.相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.

(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.

3.绝对值

(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.

①互为相反数的两个数绝对值相等;

②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

③有理数的绝对值都是非负数.

(2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:

①当a是正有理数时,a的绝对值是它本身a;

②当a是负有理数时,a的绝对值是它的相反数﹣a;

③当a是零时,a的绝对值是零.

即|a|={a(a>0)0(a=0)﹣a(a<0)

4.有理数大小比较

(1)有理数的大小比较

比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.

(2)有理数大小比较的法则:

①正数都大于0;

②负数都小于0;

③正数大于一切负数;

④两个负数,绝对值大的其值反而小.

❸ 求人教版初一数学的重点知识!!

知识点1:正、负数的概念
知识点2:有理数的概念和分类:整数和分数统称有理数,有限小数和无限循环小数都可看作分数
知识点3:数轴的概念,规定了原点、正方向和单位长度的直线叫做数轴
知识点4:绝对值的概念《注:任何一个数的绝对值均大于或等于0(即非负数)》
(1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;
(2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。
知识点5:相反数的概念:
(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;
(2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0
知识点6:有理数大小的比较:
有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。
数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。
用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。
知识点7:有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数
知识点8:有理数加法运算律:
加法交换律:两个数相加,交换加数的位置,和不变。

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。

知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

知识点11: 乘法与除法
1.乘法法则
2.除法法则
3.多个非零的数相乘除最后结果符号如何确定

知识点12:倒数
1. 倒数概念
2. 如何求一个数的倒数?(注意与相反数的区别)

知识点13:乘方
1. 乘方的概念,乘方的结果叫什么?
2. 认识底数,指数
3. 正数的任何次幂是_________,零的任何次幂________
负数的偶次幂是_________奇次幂是________

知识点14:混合计算
注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算.

知识点15:科学记数法
知识点16:一元一次不等式的解法,
难点:了解不等式的解集和不等式组的解集的确定,正确运用不等式基本性质3。
关键:彻底弄清不等式和等式的基本性质的区别.
(1)不等式概念:用不等号(“≠”、“<”、“>”)表示的不等关系的式子叫做不等式
(2)不等式的基本性质,它是解不等式的理论依据.
(3)分清不等式的解集和解不等式是两个完全不同的概念.
(4)不等式的解一般有无限多个数值,把它们表示在数轴上,(5)一元一次不等式的概念、解法是重点和核心
(6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集
(7)由两个一元一次不等式组成的一元一次不等式组.一元一次不等式组可以由几个(同未知数的)一元一次不等式组成
(8).利用数轴确定一元一次不等式组的解集
知识点17:
1.二元一次方程,二元一次方程组以及它的解,明确二元一次方程组的解是一对未知数的值,会检验一对数值是不是某一个二元一次方程组的解.
2.一次方程组的两种基本解法,能灵活运用代入法,加减法解二元一次方程组及简单的三元一次方程组.
3.根据给出的应用问题,列出相应的二元一次方程组或三元一次方程组,从而求出问题的解,并能根据问题的实际意义,检查结果是否合理.
重点是:二元一次方程组的解法——代入法,加减法以及列一次方程组解简单的应用问题.
难点是:
1.会用适当的消元方法解二元一次方程组及简单的三元一次方程组;
2.正确地找出应用题中的相等关系,列出一次方程组.
知识点18重点是:整式的乘除运算,特别是对幂的运算及乘法公式的应用要达到熟练程度.
难点是:对乘法公式结构特征和公式中字母意义的理解及乘法公式的灵活应用
1.幂的运算性质,正确地表述这些性质,并能运用它们熟练地进行有关计算.
2.单项式乘以(或除以)单项式,多项式乘以(或除以)单项式,以及多项式乘以多项式的法则,熟练地运用它们进行计算.
3.乘法公式的推导过程,能灵活运用乘法公式进行计算.
4.熟练地运用运算律、运算法则进行运算,
5.体会用字母表示数和用字母表示式子的意义.通过式的变形,深入理解转化的思想方法.
知识点19:
1、认识事物的几种方法:观察与实验 归纳与类比 猜想与证明 生活中的说理 数学中的说理
2、定义、命题、公理、定理
3、简单几何图形中的推理
4、余角、补交、对顶角
5、平行线的判定
判定:一个公理两个定理。
公理:两直线被第三条直线所截,如果同位角相等(数量关系)两直线平行(位置关系)
定理:内错角相等(数量关系)两直线平行(位置关系)
定理:同旁内角互补(数量关系)两直线平行(位置关系).
平行线的性质:
两直线平行,同位角相等
两直线平行,内错角相等
两直线平行,同旁内角互补
由图形的“位置关系”确定“数量关系”
知识点20:
重点:因式分解的方法,
难点:分析多项式的特点,选择适合的分解方法
1. 因式分解的概念;
2.因式分解的方法:提取公因式法、公式法、分组分解法(十字相乘法)
3.运用因式分解解决一些实际问题.(包括图形习题)
知识点21:
重点是:用统计知识解决现实生活中的实际问题.
难点是:用统计知识解决实际问题.
1.统计初步的基本知识,平均数、中位数、众数等的计算、
2.了解数据的收集与整理、绘画三种统计图.
3.应用统计知识解决实际问题能解决与统计相关的综合问题

假如有漏的不要介意啊。。。。。

❹ 初一上册数学复习资料

《初中数学华师大版七年级上册》网络网盘免费资源下载

链接: https://pan..com/s/1bqeovtCC8e9k6ShcnIq9oA

?pwd=y83e 提取码: y83e

❺ 初一数学知识点有哪些

初一数学知识点如下:

1、0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数。

2、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

3、在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成 的形式。

4、有理数中1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

5、数轴的作用:所有的有理数都可以用数轴上的点来表达。

❻ 数学初中全部重要知识点有哪些

数学初中全部重要知识点:

一、一元一次方程

1、只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

3、一元一次方程解法的一般步骤:整理方程、去分母、去括号、移项、合并同类项、系数化为1。

二、解一元二次方程的步骤

1、配方法的步骤

先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。

2、分解因式法的步骤

把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。

3、公式法

就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。

4、韦达定理

利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a。

也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。

5、一元一次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diaota”,而△=b2-4ac,这里可以分为3种情况:

(1)当△>0时,一元二次方程有2个不相等的实数根。

(2)当△=0时,一元二次方程有2个相同的实数根。

(3)当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)。

三、有理数

1、定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。

2、数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。

3、相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。

4、绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

5、有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

6、有理数的乘法

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积为0。例:0×1=0。

7、有理数的除法

除以一个不为0的数,等于乘这个数的倒数。

❼ 初一数学的知识点

不同版本学的内容不同,你学的什么版本?至于学的哪些知识点,你看一下目录就明白了。

❽ 人教版【初中数学】知识点总结-全面整理(超全)

《初中数学|升级版人教版初中数学七年级下册》网络网盘资源免费下载

链接:https://pan..com/s/1Aqd2mzuHw21jbIBsyK9EUQ

提取码:65qa

初中数学|升级版人教版初中数学七年级下册|升级版人教版初中数学七年级上册|升级版人教版初中数学九年级下册|升级版人教版初中数学九年级上册|升级版人教版初中数学八年级下册|升级版人教版初中数学八年级上册|人教版初中数学7年级上册|数学初中2上15.4因式分解(一).rmvb|数学初中2上15.4因式分解(二).rmvb|数学初中2上15.3同底数幂的除法.rmvb|数学初中2上15.2乘法公式.rmvb|数学初中2上15.1整式的乘法(一).rmvb|数学初中2上15.1整式的乘法(二).rmvb|数学初中2上14.4选择方案(一).rmvb

❾ 初一数学知识点有哪些

初一数学知识点如下:

1、数轴的三要素:原点、正方向、单位长度。

2、绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

3、加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

4、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

5、多项式:几个单项式的和叫做多项式。