❶ 负数的认识 手抄报 急!!!!!!!
知识点一:整数
1、整数的范围
整数包括自然数和负整数,或者说整数由正整数、零、负整数组成。
(1)自然数
自然数的意义:我们在数物体的时候,用来表示物体的个数0,1,2,3,4,5,…..叫做自然数。自然数的个数是无限的,没有最大的自然数。
自然数的基本单位:任何非“0”的自然数都是若干个“1”组成,所以“1”是自然数的基本单位。1也是最小的一位数。
“0”的含义:“0”表示一个物体也没有,在计数中起占位作用,表示该数位上没有计数单位。“0”还可以表示起点、分界点等。“0”是最小的自然数。
自然数的两种意义:如果一个自然数用来表示物体的个数就叫基数;如果一个自然数用来表示物体排列的次序就叫序数。
(2)正数
正数的定义 以前学过的8、16、200……..这样的数叫做正数。
正数的写法和读法 正数前面也可以加“+”号,例如:+8读作:正八。“+”号一般可以省略不写。
(2)负数
负数的定义 像-1、-5、-132……这样的数叫做负数。“一”叫负号。
负数的写法和读法 负数前面加“一”号,例如:-15读作:负十五。数字越大的负数反而越小。
“0”既不是正数,也不是负数。
(4)整数与自然数的联系及区别
自然数全是整数,整数不全是自然数,还包括负整数。
2、整数的读法和写法
数的分级 按照我国的计数习惯,整数从个位起,每四个数位是一级。个位、十位、百位、千位是个级,表示多少个一;万位、十万位、百万位、千万位是万级,表示多少个万位;亿位、十亿位、百亿位、千亿位是亿级,表示多少个亿。
计数单位 整数、小数都是按照十进制写出的数,其中一(个)、十、百…….是整数的计数单位。计数单位是按一定顺序排列的。
数位 各个计数单位所占的位置叫数位。如9357中的“5”在右起第二位,即“5”所在的数位是十位。
位数 指一个数是由几个数字组成,是含有数位个数,如1234占有四个数位,就是四位数。
十进制计数法 十进制是指满十进一,十个一进为十,十个十进位百,十个百进为千……每相邻两个计数单位间的进率都是“十”,这样的计数法叫做十进制计数法。
(2)整数的读法和写法
整数的读法 读整数时,从高位到低位,一级一级地读,读亿级、万级时,按照个级的读法去读,只要在后面加上“亿”字、“万”字就可以了,每一级末尾的“0”都不读出来,其他数位有一个“0”或连续几个“0”都只读一个零。
整数的写法 写整数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3、整数大小的比较
比较两个整数的大小,整数数位多的数比较大;整数数位相同的,要从高位依次看相同数位上的数字,相同数位上数字大的数比较大。
知识点二 小数
1、小数的意义
把整数“1”平均分成10份,100份,1000份……这样的1份或几份是十分之几,百分之几,千分之几…….可以用小数来表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…….
1、小数的读法和写法
小数部分的最高计数单位“十分之一”和整数部分的最低计数单位“一”之间的进率也是十。
(2)小数的读法和写法
读小数时,整数部分按整数的读法读,整数部分是0的读作“零”,小数点读作“点”,小数部分可以顺次读出每个数位上的数字。
写小数时,整数部分按整数的写法写,整数部分是零的要写“0”,小数点点在个位的右下角,然后依次写出小数部分每个数位上的数字。
3、小数大小的比较
比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就在;十分位上的数也相同的,百分位上的数大的那个数就大……
4、数的改写与求近似数
(1)数的改写与省略这个数某一位后面的尾数写成近似数的方法
为了读写方便,常把较大的数简写成用“万”或“亿”作单位的数。如:2365500=236.55万(改写用“万”作单位的数)。有时还可以根据需要,省略这个数某一的尾数,写成近似数。如:2365500≈237万(省略万位后面的尾数),有时还要求保留一位小数的近似数。如:7.62983≈7.6(保留一位小数)。
取近似数时,常用“四舍五入法”或“进一法”、“去尾法”把一个数某一位后面的尾数省略。
(2) 较大数的“改写”与“求近似数”的异同
相同点 都是改变原数的计数单位。根据要求用“亿”或“万”作单位。
不同点 “改写”只改变数的单位,不改变数的大小,用“=”表示。“求近似数”是用四舍五入法或“进一法”、“去尾法”,既改变了数的单位,又改变数的大小,用“≈”表示。
5、小数的分类与性质
(1)小数的分类
按小数的整数部分是否为0,小数分为纯小数和带小数。
纯小数 整数部分是0的小数叫做纯小数。
带小数 整数部不是0的小数叫做带小数。(纯小数都小于1,带小数都大于或等于1。)
按小数部分的倍数是否有限,小数可以分为有限小数和无限小数。
有限小数 小数部分的位数有限的小数,叫做有限小数。
无限小数 小数部分的位数无限的小数,叫做无限小数。
无限小数又可以分为无限不循环小数和无限循环小数两类。
循环小数 一个无限小数,从小数部分的某一位起,一个数定或几个数字依次不断地重复出现,这样的小数叫做无限循环小数。
循环节 一个循环小数的小数部分依次不断地重复出现的数字,叫做这个循环小数的循环节。
循环小数的简便写法 写循环小数时,为了简便,一般只写出它的第一个循环节,并在循环节的首位和末尾数字上各点一个小圆点。
(2)小数的性质
小数的末尾添上“0”或者去掉“0”,小数的大小不变,(注意:是在“小数的末尾”而不是“小数点的后面”。)
(3)小数点位置的移动引起小数的大小变化
小数点向右移动一位、二位、三位、…….小数就扩大到原来的10倍、100倍、1000倍……小数点向左移动一位、两位、三位……小数就缩小到原来的 、 、 ……
(4)常见的质量单位、人民币单位、时间单位及各单位间的坦率
(5)平年、闰年的判断方法
公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。
知识点三 分数
1、分数的意义 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
2、分数单位 把单位“1”平均分成若干份,表示其中一份的分数,叫做分数单位。
3、分数的分类
(1)真分数 分子比分母小的分数叫做真分数。
(2)假分数 分子比分母大或者与分母相等的分数叫做假分数。
4、分数的基本性质 分数的分子一分母同时乘或除以一个相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
5、分数与除法的关系 (1)分数的分子相当于除法的被除数,分数的分母相当于除法的除数,分数线相当于除法的除号。(2)在除法中,除数不能为0,在分数中分母也不能为0,除数、分母为0没有意义。
6、约分 把一个分数化成同它相等,且分子、分母都比较小的分数的过程,叫做约分。
7、最简分数 分子、分母是互质数的分数叫做最简分数。
8、通分 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
9、分数大小的比较 分母相同的两个分数,分子大的分数比较大;分子相同的两个分数,分母小的分数比较大。
10、分数化小数 根据分数与除法的关系,把分数转化为除法算式,然后计算,就可以得到小数。
分数化小数有两种情况:一般是分子除以分母能除尽,得到有限小数,如 =0.4;一种是分子除以分母除不尽,得到无限小数,如 =0.142857……
11、小数化为分数 原来有几位小数,就在1的的后面写上几个0!
❷ 关于负数的知识点有哪些
关于负数的知识点如下:
1、负数是在人为规定正方向的前提下出现的。2、0既不属于正数,也不属于负数,它是正数和负数的分界。
3、负数前面必定有“-”如果前面不是“-”(可能没有符号或者是“+”)都是正数(0除外)。
4、在选择用正数还是负数表示时,首先看是否规定了正方向。
5、负数常用来表示和正数意义相反的量。
❸ 正数和负数的知识点
正数和负数知识点精析与应用有哪些?下面是小编为大家整理的关于数学正数和负数知识点总结,希望对您有所帮助。欢迎大家阅读参考学习!
数学正数和负数知识点总结
1.相反意义的量
现实生活中,有一些意义相反的词,反映着一些不同的情境、状态或过程,如“高出与低于”“扩大与缩小”等,这些词与数字、单位结合在一起就构成了相反意义的量,如“涨0.1元”“调出80t”等,这个概念包含:
(1)意义相反,如向东与向西,收入与支出等.
(2)都是同类的数量,如“高出10米与支出300元”就不是相反意义的量.
2.正数和负数
(1)正数:如+1,+3/2号,+1.05等这些小学里学过的数(除0外)前加上“+”
号就是正数,此时的“+”不是表示加法运算,而是代表数的性质,如“+1”读作“正1”,正数前面的“+”可省略不写.
车上淋7
(2)负数:如-1,-7/3,-2.1等在正数前面加“-”号的数就是负数,“-”号
表示数的性质,读作“负”,负数前面的“-”号不能省略.
(3)关于“0”的意义.
0既不是正数,也不是负数,是正数与负数的“分界线”,同时,它不再是小学理解的表示“没有”的数,也不再是最小的数,结合生活实际,它具有自身的意义,如“00C”表示冰点时的温度等.
3.用正负数表示具有相反意义的量
正数是比0大的数,负数是比0小的数,正、负数可用来表示生活中这些具有相反意义的量.自然界中有许多具有相反意义的量,如上升5米与下降6米,向东l0km与向西8km,盈余10万元与亏损2万元等,都可以用正数与负数来表示它们.
解题方法指导
[例1]用正、负数表示下列具有相反意义的量.
(1)在知识竞赛中,如果用+10表示加10分,那么扣20分应怎样表示?
(2)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向旋转了12圈怎样表示?
(3)在某次乒乓球质量检测中,一只乒乓球超出标准重量0.02g记作+0.02g,那么-0.03g表示什么?
分析:(1)加分和扣分具有相反意义,+10表示加10分,则扣20分应用-20表示;
(2)逆时针转动转盘与顺时针转动转盘表示相反意义,逆时针转动为正,则顺时针转动为负;
(3)超出标准质量的相反意义的量是低于标准质量,超出标准质量0.02g表示为+0.02g,则-0.03g表示低于标准质量0.03g.
解:(1)扣20分记作-20;
(2)沿顺时针方向转12圈记作-12圈;
(3)-0.03g表示乒乓球低于标准质量0.03g.
说明:具有相反意义的两个量规定其中一个量用正数表示,另一个量就用负数表示,到底用正数还是用负数来表示其中的哪一个量,只是一种规定,但也常遵循人们的习惯,比如人们习惯用正数表示零上温度,用正数表示收入等.
[例2]某水文站记录一条河流的正常水位是28米,记录表上有6次记录分别为+2.1,0,-1.2,-3,-2,+1,这6次记录表示的实际水位分别是?
分析:在现实生活中,人们总是习惯把“高于”“上升”等记为正数,一般情况下,数学遵循这些生活“约定俗成”的规矩,所以,本题中的“+”号表示高于正常水位.
解:30.1米,28米,26.8米,25米,26米,29米。
说明:从本题的解答过程可以看出,数学与现实生活是密不可分的,脱离了生活去看数学,不仅会感到单调与枯燥,而且也会让数学成了“无源之水”.
【变式】课桌的高度比标准高度高出2mm,记作+2mm,那么比标准高度低3mm记作什么?现在有5张课桌,量得它们的尺寸分别为+lmm、-1mm、-1.5mm、0mm、+3mm.若规定课桌高度比标准高度最高不能超过2mm、最低不能少于2mm就算合格,问上述5张课桌中有几张合格?
分析:用正、负数表示相反意义的量,把比标准高度高记为正,则比标准高度低记为负;规定课桌的高度比标准高度最高不能超过2mm,最低不能少于2mm就算合格,也就是量得尺寸高、低在+2mm和-2mm之间算合格,故知+1mm、-lmm.0mm、-1.5mm均为合格.
解:比标准高度低3mm记作-3mm,以上5张课桌中有4张合格.
[例3]若向东走8m,记作+8m,一个人从A地出发先走+18m,再走-15m,又走+20m,最后走-12m,你能判断此人这时在何处吗?
分析:因为规定向东为正,所以走-15m、-12m,即为向西走15m和12m,那么这个人最后应在18-15+20-12=11(m)处,即在A的东边11m处.
解:18-15+20-12=11即+11.故这个人最后在A处以东llm处.
说明:(1)要正确理解“+”“-”号在实际问题中的意义,当我们规定出正数的意义后,“-”号就表示与“+”号意义相反的意思,如本题的“-”号即表示
“向西走”.
(2)本题可结合经验,用示意图帮助求解,就像直接观察温度计来获取温度变化情况一样
❹ 负数手抄报的资料
世界是由许多相互矛盾的事物组成的。要想认识这个世界,改造这个世界,就要从这些矛盾的事物入手。数学研究亦是如此。奇与偶,正与负,左与右,一与众,直与曲,动与静等,是一组组对立概念,其中蕴含了对立统一、联系发展这些最朴素的哲学思想,如何通过我们的数学课堂向学生渗透这些思想呢?
引出对立的一组矛盾,用“4”这一个数无法表达两种相反意义的量,怎么办?学生利用已有的生活经验解决矛盾,在数前用不同符号表达两种相反意义的量,使这对矛盾在符号化的思想下得到统一,让学生感受到符号的作用。
利用学生随意写的5个正数和5个负数,引导学生观察,以前学过的整数(除0外)、分数、小数都是正数,在这些数的前面增加一个负号,就有了负数的集合,这样抓住了负数与过去所学的数之间的联系,感受了数的发展。
负数四则运算口诀口诀释义加法减法乘法除法被乘数乘数积被除数除数商正正得正a + (+b) = a + b-正正正正正正正负得负a + (−b) = a − b-正负负正负负负正得负-a − (+b) = a − b负正负负正负负负得正-a − (−b) = a + b负负正负负正负数四则运算口诀简单版两个符号一样两个符号不同得正得负
❺ 正负数的手抄报
写正负数的定义,区别之类的。
❻ 负数知识点整理有哪些
负数知识点如下:
1、负数的定义:在正数前面加上“-”就是负数。
2、一般含有褒义的量用正数表示,含有贬义的量则用负数表示。
3、负数是在人为规定正方向的前提下出现的。4、任何一个数都可以用直线上的一个点表示,反过来,直线上任何一点都表示一个数。
5、正数的大小比较,数字大的大,负数大小的比较和正数大小的比较刚好是相反的,数字大的反而小。
❼ 数学手抄报上可以写什么内容
怡 2017-08-08 15:11:13
数学中包含的知识有很多,我们要学习的东西也会有很多的,制作一份手抄报也不会很难。下面是学习啦小编为大家带来的数学手抄报,希望大家喜欢。
数学手抄报图片欣赏
数学手抄报可以写什么内容图一
数学手抄报可以写什么内容图二
数学手抄报可以写什么内容图三
数学手抄报可以写什么内容图四
数学手抄报可以写什么内容图五
数学手抄报资料1:零的认识
零看上去很单调,就是没有,其实它非常地丰富,它隐藏了许多。在数学中零非常特殊,不管做什么题,你应该考虑零。 在几何中,“0”经常被作为记号。 “0”的特殊源于在一些概念或题里,比如每个有理数都有倒数,“0”却没有,有理数分为正数、负数。“0”,一个数就分为一类,这不特殊吗?在除数里,只有零不能作除数。零作被除数,不管除以什么数(“0”除外)都得零。
往往我们会忽视零,但它却起着重要的责任。如,问等于几?有些人就不能联想到“0”。在数数时,有人就会忘掉零。如:不大于5不小于-5的整数有几个?有人就会定有8个。
其实还有0。如:有哪些数的绝对值不大于本身?那就是正数和零(也可以称之为非负数)。 零在生活中更量五彩斑斓。在期末后开家长会,老师那里登记的犯错本给家长看时,我们都希望自己的那一格记着“0”,这表示我们没有犯过错,家长高兴,我们高兴。
但是在卷子上我们都不希望看到这个数或接近这个数的整正数,否则回家的日子就难过了。在比赛中,谁都不希望得到“0”。 零是丰富的。我认为零在题中是陷井,大家以后做题时应考虑零。零在不同的场合也能使人的情绪 ......
❽ 数学手抄报内容!
数学手抄报内容!
初一数学上册知识点
一、 知识梳理
知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、
-0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。
知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:
注:有限小数和无限循环小数都可看作分数。
知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。
知识点4:绝对值的概念:
(1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;
(2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。
注:任何一个数的绝对值均大于或等于0(即非负数).
知识点5:相反数的概念:
(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;
(2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。
知识点6:有理数大小的比较:
有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。
数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。
用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。
❾ 正数与负数手抄报图片 急急急急!!!
注:【改一下题目】
❿ 数学手抄报上该写什么内容
数学手抄报资料1:零的认识
零看上去很单调,就是没有,其实它非常地丰富,它隐藏了许多。在数学中零非常特殊,不管做什么题,你应该考虑零。 在几何中,“0”经常被作为记号。 “0”的特殊源于在一些概念或题里,比如每个有理数都有倒数,“0”却没有,有理数分为正数、负数。“0”,一个数就分为一类,这不特殊吗?在除数里,只有零不能作除数。零作被除数,不管除以什么数(“0”除外)都得零。
往往我们会忽视零,但它却起着重要的责任。如,问等于几?有些人就不能联想到“0”。在数数时,有人就会忘掉零。如:不大于5不小于-5的整数有几个?有人就会定有8个。
其实还有0。如:有哪些数的绝对值不大于本身?那就是正数和零(也可以称之为非负数)。 零在生活中更量五彩斑斓。在期末后开家长会,老师那里登记的犯错本给家长看时,我们都希望自己的那一格记着“0”,这表示我们没有犯过错,家长高兴,我们高兴。
但是在卷子上我们都不希望看到这个数或接近这个数的整正数,否则回家的日子就难过了。在比赛中,谁都不希望得到“0”。 零是丰富的。我认为零在题中是陷井,大家以后做题时应考虑零。零在不同的场合也能使人的情绪改变。它是美妙而又丰富的。
数学手抄报资料2:数学游戏
四个同学在一起做数学游戏。小华、小军和小明把手放在背后。小虎拿了二只白球、三只红球给他们看,接着从背后给他们每人手中放一只红球,剩下的二只白球悄悄地藏起来。然后,允许他们每人看一下另外两个人手中拿的是什么颜色的球,但不准看自己手中的球。看过以后,小虎要他们迅速判断自己手中的是什么颜色的球。小明第一个猜出了自己手中球的颜色。他是怎样判断出来的呢?
小明想:小华和小军都是红球,那我的球可能是白球,也可能是红球。如果我拿的是白球,那么小华和小军就会很快想到他们手中拿的肯定不是白球。因为此时小华可以这样推测:小明拿的是白球,如果我拿的也是白球,小军就会马上说出自己是红球,因为白球总共只有2个。小军也可以马上说出自己是红球,因为白球总共只有2个。小军也可以作以上这番推测,并迅速作出判断。而现在他们两人都犹豫不决,可见我手中拿的一定是个红球。