当前位置:首页 » 基础知识 » 初一下数学笔记第五章知识构图
扩展阅读
经典曲艺包括哪些 2025-01-19 07:47:29
酷狗怎么做歌词 2025-01-19 07:42:03

初一下数学笔记第五章知识构图

发布时间: 2022-07-16 21:37:14

㈠ 初一数学下册前两章知识点总结

第五章:

本章重点:一元一次不等式的解法,

本章难点:了解不等式的解集和不等式组的解集的确定,正确运用

不等式基本性质3。

本章关键:彻底弄清不等式和等式的基本性质的区别.

(1)不等式概念:用不等号(“≠”、“<”、“>”)表示的不等关系的式子叫做不等式

(2)不等式的基本性质,它是解不等式的理论依据.

(3)分清不等式的解集和解不等式是两个完全不同的概念.

(4)不等式的解一般有无限多个数值,把它们表示在数轴上,(5)一元一次不等式的概念、解法是本章的重点和核心

(6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集

(7)由两个一元一次不等式组成的一元一次不等式组.一元一次不等式组可以由几个(同未知数的)一元一次不等式组成

(8).利用数轴确定一元一次不等式组的解集

㈡ 初一数学上下两册书的知识点归纳。

第一册
第一章 有理数
代数初步知识
1. 代数式:用运算符号“+-× ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“•”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“•”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成 a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;
(2)若a、b、c是正整数,则两位整数是:10a+b ,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;
(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .
有理数
1.1正数和负数
以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义

1.2有理数
1.2.1有理数
正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2数轴
规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3相反数
只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4绝对值
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。

1.3有理数的加减法
1.3.1有理数的加法
有理数的加法法则:
⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b+a
三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c)
1.3.2有理数的减法
有理数的减法可以转化为加法来进行。
有理数减法法则:
减去一个数,等于加这个数的相反数。
a-b=a+(-b)
1.4有理数的乘除法
1.4.1有理数的乘法
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
两个数相乘,交换因数的位置,积相等。
ab=ba
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
(ab)c=a(bc)
一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a(b+c)=ab+ac
数字与字母相乘的书写规范:
⑴数字与字母相乘,乘号要省略,或用“”
⑵数字与字母相乘,当系数是1或-1时,1要省略不写。
⑶带分数与字母相乘,带分数应当化成假分数。
用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。
一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即
ax+bx=(a+b)x
上式中x是字母因数,a与b分别是ax与bx这两项的系数。
去括号法则:
括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。
括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。
括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。
1.4.2有理数的除法
有理数除法法则:
除以一个不等于0的数,等于乘这个数的倒数。
a÷b=a• (b≠0)
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

1.5有理数的乘方
1.5.1乘方
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0。
有理数混合运算的运算顺序:
⑴先乘方,再乘除,最后加减;
⑵同级运算,从左到右进行;
⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
1.5.2科学记数法
把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
用科学记数法表示一个n位整数,其中10的指数是n-1。
1.5.3近似数和有效数字
接近实际数目,但与实际数目还有差别的数叫做近似数。
精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。
对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。第二章一元一次方程
2.1从算式到方程
2.1.1一元一次方程
含有未知数的等式叫做方程。
只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。
分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2.1.2等式的性质
等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2从古老的代数书说起——一元一次方程的讨论⑴
把等式一边的某项变号后移到另一边,叫做移项。

2.3从“买布问题”说起——一元一次方程的讨论⑵
方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。
解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。
去分母:
⑴具体做法:方程两边都乘各分母的最小公倍数
⑵依据:等式性质2
⑶注意事项:①分子打上括号
②不含分母的项也要乘

2.4再探实际问题与一元一次方程

第三章图形认识初步
3.1多姿多彩的图形
现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。
3.1.1立体图形与平面图形
长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。
长方形、正方形、三角形、圆等都是平面图形。
许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
3.1.2点、线、面、体
几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。
包围着体的是面。面有平的面和曲的面两种。
面和面相交的地方形成线。
线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

3.2直线、射线、线段
经过两点有一条直线,并且只有一条直线。
两点确定一条直线。
点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。
直线桑一点和它一旁的部分叫做射线。
两点的所有连线中,线段最短。简单说成:两点之间,线段最短。

3.3角的度量
角也是一种基本的几何图形。
度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。
3.4角的比较与运算
3.4.1角的比较
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。
3.4.2余角和补角
如果两个角的和等于90(直角),就说这两个角互为余角。
如果两个角的和等于180(平角),就说这两个角互为补角。
等角的补角相等。
等角的余角相等。
本章知识结构图第四章数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。
4.1喜爱哪种动物的同学最多——全面调查举例
用划记法记录数据,“正”字的每一划(笔画)代表一个数据。
考察全体对象的调查属于全面调查。
4.2调查中小学生的视力情况——抽样调查举例
抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查。
统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式。调查时,可用不同的方法获得数据。除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法。
利用表格整理数据,可以帮助我们找到数据的分布规律。利用统计图表示经过整理的数据,能更直观地反映数据规律。
4.3课题学习调查“你怎样处理废电池?”
调查活动主要包括以下五项步骤:
一、 设计调查问卷
⑴设计调查问卷的步骤
①确定调查目的;
②选择调查对象;
③设计调查问题
⑵设计调查问卷时要注意:
①提问不能涉及提问者的个人观点;
②不要提问人们不愿意回答的问题;
③提供的选择答案要尽可能全面;
④问题应简明;
⑤问卷应简短。
二、实施调查
将调查问卷复制足够的份数,发给被调查对象。
实施调查时要注意:
⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;
⑵告诉被调查者你收集数据的目的。
三、处理数据
根据收回的调查问卷,整理、描述和分析收集到的数据。
四、交流
根据调查结果,讨论你们小组有哪些发现和建议?
五、写一份简单的调查报告


第二册

第五章相交线与平行线
5.1相交线
5.1.1相交线
有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。
两条直线相交,有2对对顶角。
对顶角相等。
5.1.2
两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
注意:⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。
⑶垂直是相交的特殊情况。
⑷垂直的记法:a⊥b,AB⊥CD。
画已知直线的垂线有无数条。
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

5.2平行线
5.2.1平行线
在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。
在同一平面内两条直线的关系只有两种:相交或平行。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
5.2.2直线平行的条件
两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。
两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。
两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。
判定两条直线平行的方法:
方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
5.3平行线的性质
平行线具有性质:
性质1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。
判断一件事情的语句叫做命题。
5.4平移
⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。
图形的这种移动,叫做平移变换,简称平移。


第六章 平面直角坐标系
6.1平面直角坐标系
6.1.1有序数对
有顺序的两个数a与b组成的数对,叫做有序数对。
6.1.2平面直角坐标系
平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
平面上的任意一点都可以用一个有序数对来表示。
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
6.2坐标方法的简单应用
6.2.1用坐标表示地理位置
利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:
⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
6.2.2用坐标表示平移
在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

第七章三角形
7.1与三角形有关的线段
7.1.1三角形的边
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。
顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。
三角形两边的和大于第三边。
7.1.2三角形的高、中线和角平分线
7.1.3三角形的稳定性
三角形具有稳定性。
7.2与三角形有关的角
7.2.1三角形的内角
三角形的内角和等于180。
7.2.2三角形的外角
三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角。
7.3多边形及其内角和
7.3.1多边形
在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
n边形的对角线公式:
各个角都相等,各条边都相等的多边形叫做正多边形。
7.3.2多边形的内角和
n边形的内角和公式:180(n-2)
多边形的外角和等于360。
7.4课题学习镶嵌

第八章二元一次方程组
8.1二元一次方程组
含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程
把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
8.2消元
由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。
8.3再探实际问题与二元一次方程组

第九章不等式与不等式组
9.1不等式
9.1.1不等式及其解集
用“<”或“>”号表示大小关系的式子叫做不等式。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
9.1.2不等式的性质
不等式有以下性质:
不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变。
9.2实际问题与一元一次不等式
解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式。
9.3一元一次不等式组
把两个不等式合起来,就组成了一个一元一次不等式组。
几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。
对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。
一元一次方程
1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!
2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.
3.方程:含未知数的等式,叫方程.
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!
5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.
6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).
8.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).
9.一元一次方程解法的一般步骤:整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 ……(检验方程的解).
10.列一元一次方程解应用题:
(1)读题分析法:………… 多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法: ………… 多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
11.列方程解应用题的常用公式:
(1)行程问题: 距离=速度•时间 ;
(2)工程问题: 工作量=工效•工时 ;
(3)比率问题: 部分=全体•比率 ;
(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题: 售价=定价•折• ,利润=售价-成本, ;
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,
S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥= πR2h.

㈢ 数学七年级下册期中重点有那些

第五章 相交线与平行线
一、知识结构图
相交线
相交线 垂线
同位角、内错角、同旁内角
平行线
平行线及其判定
平行线的判定
平行线的性质
平行线的性质
命题、定理
平移
二、知识定义
邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

三、定理与性质
对顶角的性质:对顶角相等。
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
第六章 平面直角坐标系
一、知识结构图
有序数对
平面直角坐标系
平面直角坐标系

用坐标表示地理位置
坐标方法的简单应用
用坐标表示平移
二、知识定义
有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)
平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。
第七章 三角形
一、知识结构图

与三角形有关的线段 高
中线
角平分线
三角形的内角和 多边形的内角和
三角形的外角和 多边形的外角和

二、知识定义
三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
多边形的内角:多边形相邻两边组成的角叫做它的内角。
多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

三、公式与性质
三角形的内角和:三角形的内角和为180°
三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
多边形内角和公式:n边形的内角和等于(n-2)•180°
多边形的外角和:多边形的内角和为360°。
多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有 条对角线。 回答者: 2283759 | 二级 | 2011-4-21 17:56

1.平面图形的认识:
邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
对顶角的性质:对顶角相等。
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。

三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
多边形的内角:多边形相邻两边组成的角叫做它的内角。
多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
2.幂的运算
3.整式的乘法运算
4.乘法公式
5.因式分解
6.二元一次方程组

㈣ 七下数学课本总结并绘制前两章的知识结构图

前两张都是基础知识的,不需要画知识结构图的,你只要去掌握每个细点就行了

㈤ 初一数学各章知识梳理图

这里有下载地址:
http://www.40061.cn/thread-600-1-1.html
http://wenku..com/view/5502c069a45177232f60a22f.html
初一数学概念
实数:
—有理数与无理数统称为实数。
有理数:
整数和分数统称为有理数。
无理数:
无理数是指无限不循环小数。
自然数:
表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
数轴:
规定了圆点、正方向和单位长度的直线叫做数轴。
相反数:
符号不同的两个数互为相反数。
倒数:
乘积是1的两个数互为倒数。
绝对值:
数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

数学定理公式
有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
⑵减法法则:减去一个数,等于加上这个数的相反数。
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。
数学第一章相交线

一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。

二、对顶角:是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。

对顶角的性质:对顶角相等。

三、垂直

1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直。其中一条叫做另一条的垂线,它们的交点叫做垂足。记做a⊥b

垂直是相交的一种特殊情形。

2、垂线的性质:

①过一点有且只有一条直线与已知直线垂直;

②连接直线外一点与直线上各点的所有线段中,垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

3、画法:①一靠(已知直线)②二过(定点)③三画(垂线)

4、空间的垂直关系

四、平行线

1、 平行线:在同一平面内,不相交的两条直线叫做平行线。记做a‖b

2、 “三线八角”:两条直线被第三条直线所截形成的

① 同位角:“同方同位”即在两条直线的上方或下方,在第三条直线的同一侧。

② 内错角:“之间两侧”即在两条直线之间,在第三条直线的两侧。

③ 同旁内角“之间同旁”即在两条直线之间,在第三条直线的同旁。

3、 平行公理:经过直线外一点,有且只有一条直线与这条直线平行

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4、 平行线的判定方法

① 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

② 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;

③ 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;

④ 平行于同一条直线的两条直线平行;

⑤ 垂直于同一条直线的两条直线平行。

5、 平行线的性质:

①两条平行线被第三条直线所截,同位角相等;

②两条平行线被第三条直线所截,内错角相等;

③两条平行线被第三条直线所截,同旁内角互补。

6、 两条平行线的距离:同时垂直于两条平行线并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。

7、 命题:判断一件事情的语句,叫做命题,由题设和结论两部分组成。

五平移

1、平移:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

说明:①、平移不改变图形的形状和大小,改变图形的位置;②“将一个图形沿某个方向移动一定的距离”意味着“图形上的每一点都沿着同一方向移动了相同的距离 ”这也是判断一种运动是否为平移的关键。③图形平移的方向,不一定是水平的

2、平移的性质:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等。

㈥ 七年级数学下册第五章《相交线与平行线》预习笔记

怎么说呢,预习主要是看书,做点书本上的习题就行了,记住你是预习不是复习,别钻牛角尖,不用想着全部都懂…738899713

㈦ 人教版初中数学知识结构图

第一章 有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
第五章 相交线与平行线
5.1 相交线
对顶角(vertical angles)相等。
过一点有且只有一条直线与已知直线垂直(perpendicular)。
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
5.2 平行线
经过直线外一点,有且只有一条直线与这条直线平行(parallel)。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
直线平行的条件:
两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
5.3 平行线的性质
两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
判断一件事情的语句,叫做命题(proposition)。
第六章 平面直角坐标系
6.1 平面直角坐标系
含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。
第七章 三角形
7.1 与三角形有关的线段
三角形(triangle)具有稳定性。
7.2 与三角形有关的角
三角形的内角和等于180度。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角
7.3 多边形及其内角和
n边形内角和等于:(n-2)•180度
多边形(polygon)的外角和等于360度。
第八章 二元一次方程组
8.1 二元一次方程组
方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。
把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
8.2 消元
将未知数的个数由多化少、逐一解决的想法,叫做消元思想。
第九章 不等式与不等式组
9.1 不等式
用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性质:
不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式两边乘(或除以)同一个负数,不等号的方向改变。
三角形中任意两边之差小于第三边。
三角形中任意两边之和大于第三边。
9.3 一元一次不等式组
把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linear inequalities of one unknown)。
第十章 实数
10.1 平方根
如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。
a的算术平方根读作“根号a”,a叫做被开方数(radicand)。
0的算术平方根是0。
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。
求一个数a的平方根的运算,叫做开平方(extraction of square root)。
10.2 立方根
如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。
求一个数的立方根的运算,叫做开立方(extraction of cube root)。
10.3 实数
无限不循环小数又叫做无理数(irrational number)。
有理数和无理数统称实数(real number)。
我才是七年级的,对不起,只能帮到这了。。。。。。。

㈧ 七年级下册数学知识结构图

北师大版七年级下册数学知识结构图
一、整式的运算
1、整式
2、整式的加法
3、同底数幂的乘法
4、幂的乘方与积的乘方
5、整式的乘法
6、平方差公式
7、完全平方公式
8、整式的除法
二、平行线与相交线
1、余角与补角
2、探索平行的条件
3、平行线的特征
4、用尺规作线段和角
三、生活中的数据
1、认识百万分之一
2、近似数和有效数字
3、世纪新生儿图
课题学习:制作“人口图”
四、概率
1、游戏公平吗
2、摸到红球的概率
3、停留在黑砖上的概率
五、三角形
1、认识三角形
2、图形的全等
3、全等三角形
4、探索三角形全等的条件
5、作三角形
6、利用三角形全等测距离
7、探索直角三角形全等的条件
六、变量之间的关系
1、小车下滑的时间
2、变化中的三角形
3、温度的变化
4、速度的变化
七、生活中的轴对称
1、轴对称现象
2、简单的轴对称图形
3、探索轴对称的性质
4、利用轴对称设计图案
5、镜子改变了什么