当前位置:首页 » 基础知识 » 初一数学浙江教育出版社知识点
扩展阅读
酷狗电台怎么设置歌词 2024-11-08 03:15:09
儿童折叠蚊帐怎么折叠 2024-11-08 03:05:09
异形1和2哪个经典 2024-11-08 02:56:27

初一数学浙江教育出版社知识点

发布时间: 2022-07-16 19:40:41

‘壹’ 初一数学的知识点

不同版本学的内容不同,你学的什么版本?至于学的哪些知识点,你看一下目录就明白了。

‘贰’ 关于初一数学的所有知识点归纳,

初一数学概念
实数:
—有理数与无理数统称为实数.
有理数:
整数和分数统称为有理数.
无理数:
无理数是指无限不循环小数.
自然数:
表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数.
数轴:
规定了圆点、正方向和单位长度的直线叫做数轴.
相反数:
符号不同的两个数互为相反数.
倒数:
乘积是1的两个数互为倒数.
绝对值:
数轴上表示数a的点与圆点的距离称为a的绝对值.一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0.
数学定理公式
有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
⑵减法法则:减去一个数,等于加上这个数的相反数.
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0.
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.
文体知识
1 记叙文文体知识要点
(1) 以记叙文为主要表达方式的文章叫记叙文.语言特点,生动,形象.
(2) 作品中所反映的生活和作者对生活的看法,就是记叙文的中心,也叫中心思想.中心思想是依靠人,事,景,物这些材料来表的.因而记叙文的材料必须为中心思想服务,做到中心明确,集中.
(3) 记叙文的顺序主要有几种:顺叙,倒叙,插叙.
顺叙:按事件的发生,发展结局的过程记叙. 倒叙:把事件的结局或某个最突出的片断提到文章的开头写,然后再按时间顺序写事件的经过. 插叙:在记叙过程中,有时需要插入另一些有关的情节,然后再按着记叙原来的事情.
(4) 记叙文中的详略安排应该是能突出中心的材料应该详写;与中心有关系,但是不很重要的材料,应该略写;与中心无关的材料应该舍弃.这样,才能使记叙的中心集中,鲜明,突出.
(5) 记叙文的样式常见有:对现实生活中典型人物和事迹作具体报道的通讯.用文字语言和文学手法描述真人真事的特写.记叙山川景物,旅途见闻为主的游记. 追忆本人或生活经历和社会活动的回忆录,传记,访问记等.它们共同特点是:所写内容必须真实,不容许随意夸大或缩小事实,更不能编造虚构,即要有真实性;对所写的内容又要求作必要的加工.力求文章中心突出,形象鲜明,构思精巧
(6) 特写是报告文学的一种样式,它截取人物或事件的某个片断,细致地加以描述.
(7) 传记一般分两类:一类记叙自己的生平;一类记叙他人的生平.传记的主要特点是实录,要求实事求是,不允许虚构夸张.传记在表达上以记叙为主,也可以适当插入议论,描写.传记记叙的顺序一般以时间为序.人物和人物故事的区别在于人物故事只要具体写出人物的某个事件或某几件事就行了.小传则要求写出人物的出生地,出生年月,主要经历等.人物自传的繁简区别在于自传可以根据需要采用不同写法,可以写自己全部经历,也可以写自己某个时期的经历.
2 说明文文体知识要点
(1)以说明为主要表达方式,按一定的要求解说事物或事理的文章称为说明文.说明文的语言特点:准确,平实,简洁.
(2)说明事物的前提是抓住事物的特征.所谓特征就是事物间相互区别的标志.
(3)说明文的说明顺序有:空间顺序,时间顺序,逻辑顺序,(有总说后分说,先主要后次要,先原因后结果,由现象到本质,由性能到功用等)
(4)常用的说明方法有:分类别,作解释,举例子,打比方,作比较,用数字,列图表.
(5)说明文按说明对象和内容分有:说明实体事物和说明抽象事理两大类.说明文按写作方法和表达方式分有:平实性说明文和文艺性说明文.
(6)平实性说明文和文艺性说明文的区别在于:平实性说明文纯用说明的表达方式,语言朴实简明,内容具体,切实使人读了就能明白.如自然科学的各类教科书.科技信息资料,实验报告,说明书等.文艺性说明文以说明为主,辅以叙述,描写,抒情等多种表达方式,并常用借助一些修辞方法,形象化地介绍事物或阐述事理,使读者在获得知识的同时,还能得到艺术的享受,这类说明文通常称知识小品或科学小品.
(7)说明文的描写和记叙文中的描写区别:a 目的不同:记叙文中的描写是为了“使人有所感,”;说明文的描写是为了“使人有所知”.b 记叙文可以根据中心思想的需要,使用各种描写方法起到多方面的作用.说明文的描写则只能在说明事物的过程中,借助某钟形象化的手法,对事物的特征作一些必要的描绘,主要是起到使说明的事物特征更具体,更形象.c 记叙文中的描写可以发挥艺术想象,可以夸张,渲染,而说明文中的描写在务真求实的前提下进行语言加工,做到既形象生动,又真实可信.
3 议论文文体的知识要点
(1)生活中少不了议论,讲道理,发表意见就是议论.以议论为主要表达方式的文章就是议论文.
(2)议论总要提出看法或主张,这种看法或主张就是论点,用来证明论点的材料就为论据,用论据来证明论点的过程即为论证过程.
(3)用以证明论点的材料有两大类:事实材料(事实论据)即确凿的事例;史实;统计数字等.理论材料(道理论据)即名人名言;警句;格言;科学原理;自然定律;马列毛泽东思想.
(4)议论文的基本结构:提出问题;分析问题;解决问题.议论文的基本论证方法:摆事实,讲道理.论证方式:立论,驳论.所谓立论就是正面阐述自己的观点.驳论就是批驳错误的观点.
(5)一事一议议论文的写作特点:借事发表议论,就事说明道理.而从“事”到议.又必须理出并把握两者的联系点,才可顺理成章地展开议论,这事“一事一议”的关键.
(6)议论文常见的有几种样式:社论,评论,学术论文,专题讨论,杂感,随笔以及侧重1于议论性的讲演词,书信等.在以上样式中,有理论性较强的,有文艺性较强的.

‘叁’ 初一的所有知识点数学

1.数轴

(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

数轴的三要素:原点,单位长度,正方向.

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.

2.相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.

(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.

3.绝对值

(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.

①互为相反数的两个数绝对值相等;

②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

③有理数的绝对值都是非负数.

(2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:

①当a是正有理数时,a的绝对值是它本身a;

②当a是负有理数时,a的绝对值是它的相反数﹣a;

③当a是零时,a的绝对值是零.

即|a|={a(a>0)0(a=0)﹣a(a<0)

4.有理数大小比较

(1)有理数的大小比较

比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.

(2)有理数大小比较的法则:

①正数都大于0;

②负数都小于0;

③正数大于一切负数;

④两个负数,绝对值大的其值反而小.

‘肆’ 初一数学知识点有哪些

初一数学知识点如下:

1、0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数。

2、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

3、在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成 的形式。

4、有理数中1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

5、数轴的作用:所有的有理数都可以用数轴上的点来表达。

‘伍’ 初一数学知识点有哪些

初一数学知识点如下:

1、数轴的三要素:原点、正方向、单位长度。

2、绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

3、加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

4、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

5、多项式:几个单项式的和叫做多项式。

‘陆’ 七年级上册数学书目标与评定99~101浙江教育出版社的

1.D 2.A 3.C 4.A 5.B
6.错,改为:2x+6-5+5x=3x-3
2x+5x-3x=-3-6+5
4x=-4
x=-1
7.x=4 x=-6 8.14 9.(1) 24 (2) 22 10.B
11.设机票价格为x元
(30-20)*1.5%x=2(12+11-x)
x=1100
12.(1)掉去图书馆的学生有想x人
21+x=2(12+15-x)
x=11
(2)不行,因为由21+x=2(12+11-x)解得x=3/25人不可能是分数赞

‘柒’ 初一数学全部知识点有哪些

一、正负数

1、正数:大于0的数。

2、负数:小于0的数。

3、正数大于0,负数小于0,正数大于负数。

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

二、有理数

1、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

三、数轴

1、数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

2、数轴的三要素:原点、正方向、单位长度。

3、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

相反数的和为0 a+b=0 a、b互为相反数。

四、有理数的加减法

1、先定符号,再算绝对值。

2、加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

五、有理数乘法(先定积的符号,再定积的大小)

1、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

2、乘积是1的两个数互为倒数。

‘捌’ 初一数学知识点总结

第一册

第一章 有理数
1.1正数和负数
以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义

1.2有理数
1.2.1有理数
正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2数轴
规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3相反数
只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4绝对值
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。

1.3有理数的加减法
1.3.1有理数的加法
有理数的加法法则:
⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b+a
三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c)
1.3.2有理数的减法
有理数的减法可以转化为加法来进行。
有理数减法法则:
减去一个数,等于加这个数的相反数。
a-b=a+(-b)
1.4有理数的乘除法
1.4.1有理数的乘法
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
两个数相乘,交换因数的位置,积相等。
ab=ba
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
(ab)c=a(bc)
一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a(b+c)=ab+ac
数字与字母相乘的书写规范:
⑴数字与字母相乘,乘号要省略,或用“”
⑵数字与字母相乘,当系数是1或-1时,1要省略不写。
⑶带分数与字母相乘,带分数应当化成假分数。
用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。
一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即
ax+bx=(a+b)x
上式中x是字母因数,a与b分别是ax与bx这两项的系数。
去括号法则:
括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。
括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。
括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。
1.4.2有理数的除法
有理数除法法则:
除以一个不等于0的数,等于乘这个数的倒数。
a÷b=a• (b≠0)
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

1.5有理数的乘方
1.5.1乘方
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0。
有理数混合运算的运算顺序:
⑴先乘方,再乘除,最后加减;
⑵同级运算,从左到右进行;
⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
1.5.2科学记数法
把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
用科学记数法表示一个n位整数,其中10的指数是n-1。
1.5.3近似数和有效数字
接近实际数目,但与实际数目还有差别的数叫做近似数。
精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。
对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

第二章 一元一次方程
2.1从算式到方程
2.1.1一元一次方程
含有未知数的等式叫做方程。
只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。
分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2.1.2等式的性质
等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2从古老的代数书说起——一元一次方程的讨论⑴
把等式一边的某项变号后移到另一边,叫做移项。

2.3从“买布问题”说起——一元一次方程的讨论⑵
方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。
解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。
去分母:
⑴具体做法:方程两边都乘各分母的最小公倍数
⑵依据:等式性质2
⑶注意事项:①分子打上括号
②不含分母的项也要乘

2.4再探实际问题与一元一次方程

第三章 图形认识初步
3.1多姿多彩的图形
现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。
3.1.1立体图形与平面图形
长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。
长方形、正方形、三角形、圆等都是平面图形。
许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
3.1.2点、线、面、体
几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。
包围着体的是面。面有平的面和曲的面两种。
面和面相交的地方形成线。
线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

3.2直线、射线、线段
经过两点有一条直线,并且只有一条直线。
两点确定一条直线。
点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。
直线桑一点和它一旁的部分叫做射线。
两点的所有连线中,线段最短。简单说成:两点之间,线段最短。

3.3角的度量
角也是一种基本的几何图形。
度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。
3.4角的比较与运算
3.4.1角的比较
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。
3.4.2余角和补角
如果两个角的和等于90(直角),就说这两个角互为余角。
如果两个角的和等于180(平角),就说这两个角互为补角。
等角的补角相等。
等角的余角相等。
本章知识结构图

第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。
4.1喜爱哪种动物的同学最多——全面调查举例
用划记法记录数据,“正”字的每一划(笔画)代表一个数据。
考察全体对象的调查属于全面调查。
4.2调查中小学生的视力情况——抽样调查举例
抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查。
统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式。调查时,可用不同的方法获得数据。除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法。
利用表格整理数据,可以帮助我们找到数据的分布规律。利用统计图表示经过整理的数据,能更直观地反映数据规律。
4.3课题学习 调查“你怎样处理废电池?”
调查活动主要包括以下五项步骤:
一、 设计调查问卷
⑴设计调查问卷的步骤
①确定调查目的;
②选择调查对象;
③设计调查问题
⑵设计调查问卷时要注意:
①提问不能涉及提问者的个人观点;
②不要提问人们不愿意回答的问题;
③提供的选择答案要尽可能全面;
④问题应简明;
⑤问卷应简短。
二、实施调查
将调查问卷复制足够的份数,发给被调查对象。
实施调查时要注意:
⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;
⑵告诉被调查者你收集数据的目的。
三、处理数据
根据收回的调查问卷,整理、描述和分析收集到的数据。
四、交流
根据调查结果,讨论你们小组有哪些发现和建议?
五、写一份简单的调查报告

第二册

第五章 相交线与平行线
5.1相交线
5.1.1相交线
有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。
两条直线相交,有2对对顶角。
对顶角相等。
5.1.2
两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
注意:⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。
⑶垂直是相交的特殊情况。
⑷垂直的记法:a⊥b,AB⊥CD。
画已知直线的垂线有无数条。
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

5.2平行线
5.2.1平行线
在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。
在同一平面内两条直线的关系只有两种:相交或平行。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
5.2.2直线平行的条件
两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。
两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。
两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。
判定两条直线平行的方法:
方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
5.3平行线的性质
平行线具有性质:
性质1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。
判断一件事情的语句叫做命题。
5.4平移
⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。
图形的这种移动,叫做平移变换,简称平移。

第六章 平面直角坐标系
6.1平面直角坐标系
6.1.1有序数对
有顺序的两个数a与b组成的数对,叫做有序数对。
6.1.2平面直角坐标系
平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
平面上的任意一点都可以用一个有序数对来表示。
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
6.2坐标方法的简单应用
6.2.1用坐标表示地理位置
利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:
⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
6.2.2用坐标表示平移
在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

第七章 三角形
7.1与三角形有关的线段
7.1.1三角形的边
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。
顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。
三角形两边的和大于第三边。
7.1.2三角形的高、中线和角平分线
7.1.3三角形的稳定性
三角形具有稳定性。
7.2与三角形有关的角
7.2.1三角形的内角
三角形的内角和等于180。
7.2.2三角形的外角
三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角。
7.3多边形及其内角和
7.3.1多边形
在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
n边形的对角线公式:
各个角都相等,各条边都相等的多边形叫做正多边形。
7.3.2多边形的内角和
n边形的内角和公式:180(n-2)
多边形的外角和等于360。
7.4课题学习 镶嵌

第八章 二元一次方程组
8.1二元一次方程组
含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程
把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
8.2消元
由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。
8.3再探实际问题与二元一次方程组

第九章 不等式与不等式组
9.1不等式
9.1.1不等式及其解集
用“<”或“>”号表示大小关系的式子叫做不等式。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
9.1.2不等式的性质
不等式有以下性质:
不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变。
9.2实际问题与一元一次不等式
解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式。
9.3一元一次不等式组
把两个不等式合起来,就组成了一个一元一次不等式组。
几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。
对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。
9.4课题学习 利用不等关系分析比赛

‘玖’ 浙江初中数学知识点,谢谢!

初中代数知识整理简化版
一、实数
1、实数概念

(没有最大实数、也没最小实数)
2、性质(哪个数的××等于他本身)8种
①倒数
②相反数
③绝对值 ≥0 到原点的距离 它本身(或相反数)
④平方 ≥0
⑤立方 三句话
⑥平方根 三句话
⑦算术平方根
⑧立方根 三句话
3、数轴
①三要素 原点、正方向、单位长度

③如何读数轴 大小 绝对值大小
④两点间距离
4、比较大小
①正数>0>负数
②两个正数,绝对值大就大
③两个负数,绝对值大的反而小
④无理数一般采用平方法
5、近似数
①科学记数法 把一个数记成 的形式,其中1≤ <10,n为整数
②有效数字
③精确到×位
6、计算法则
计算 法则 备注 个人注意点
加法 ①同号

①相反数
②分数则同分母
③小数、整数则同号
④分数、小数则尽可能把分数化为小数
减法 连加减化为代数式的和(插入①、②间)
乘法 ①定符号
②绝对值相乘 ①0
②定符号
③倒数
④凑整例如:4×25=100、8×125=1000
⑤分数和小数相乘,尽可能把小数化成分数
除法 倒数 连乘除化为乘法(插入②、③间)
乘方

混合运算顺序 括号、乘方、乘除、加减 后面步骤计算不需前面步骤结果时,可同时计算

7、计算步骤(计算步骤的清晰性、计算结果的预见性)
①看 运算符、括号、几段
②想 法则、简便计算(连加减\连乘除\乘法分配律、乘法公式顺逆使用)、个人注意点
③定 定顺序、分段定符号、定绝对值
④查 做一步查一步
运算 连加减 连乘除




①几个数的和(无括号形式)
②相反数
③整数、小数取同号
④分数先取同分母
⑤分数、小数相加,尽可能把分数化成小数
⑥分数连加减,通分时可不一步到位 ①0
②定符号
③化乘为除
④倒数
⑤凑整(4*25=100、8*125=1000)
⑥分数与小数相乘,尽可能把小数化成分数

二、整式
1、整式定义

2、计算
运算 注意点
幂的运算 am•an=am+n

a0=1(a≠0); (a≠0)

加减法 ①去括号括号 括号前面是“-”号注意变号
②合并同类项:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.

乘法 ①单项式×单项式 a符号b数字c字母
②单项式×多项式
③多项式×多项式 (a+b)(c+d)=ac+ad+bc+bd
④乘法公式:
平方差公式: ;
完全平方公式: =

因式分解 步骤
①提 提公因式法
②看
③查能否在分解(①提②看)

3、代数式求值
①找(代数式、未知数的值)
②化(化简代数式、化简未知数值)
③代(遇什么换什么)
④算
注意整体思想
4、应用
①找规律用代数式表示
②用数量关系进行顺逆推理
③代数思想,设而不求

三、分式
1、 分式定义
B=0时,分式无意义;B≠0时,分式有意义
分式值为零:A=0且B≠0
2、 分式基本性质
基本性质1) = (B≠0,M是不等于0的整式)
2) = (B≠0,M是不等于0的整式)
符号
3、乘除(本质是约分)
①法则
②步骤
a定符号
b约分→积的形式→因式分解→化去相同因式(顺序是数字、单个字母、多项式) →最简分式
c划 数、字母、多项式
4、加减法
①同分母分式的加减: ± =
②异分母分式的加减: ± = ;
步骤

②分子相加减
③约分
5、混合运算(计算步骤的清晰性、计算结果的预见性)
①看 运算符、括号、几段
②想 法则、简便计算(连加减、连乘除、乘法分配律、乘法公式顺逆使用)、个人注意点
③定 定顺序、分段定符号、定绝对值
④查 做一步查一步

四、二次根式
1、 定义
2、 性质


(联想到 )
3、乘除
①法则 ; ( );
②步骤a定符号
b内乘内,外乘外
c化简(不等于分式的约分,目标是最简二次根式)
4、加减
步骤
①化为最简二次根式
②合并同类二次根式
5混合运算(计算步骤的清晰性、计算结果的预见性)
①看 运算符、括号、几段
②想 法则、简便计算(连加减、连乘除、乘法分配律、乘法公式顺逆使用)、个人注意点
③定 定顺序、分段定符号、定绝对值
④查 做一步查一步

五、一元一次方程
1、 定义
2、关于 解的情况

3、解法
序号 步骤 注意点
1 去分母 最小公倍数、漏乘
2 去括号 变号
3 移项 变号尽量使未知数的系数为正
4 合并同类项
5 系数化为1 除以未知数的系数
依据:等式性质
本质:方程简化
4、应用
①审 找题中基本数量关系,用适当名称给数量关系分类
②设 不好想时就设,问什么设什么
③列 纵向寻找同类数量关系列方程,以用过的数量关系不可以列方程
④解
⑤答

六、二元一次方程(组)
1、定义
2、二元一次方程的解
①无条件解是无数组
②有条件解一般是有限个。例如:正整数解,考虑整除通常与不等式知识相结合
3、二元一次方程组的解法
①代入消元法:有一项系数为“1”
②加减消元法:系数有倍的关系
★注意点:观察系数,选择方法
4、应用
①审 找题中基本数量关系,用适当名称给数量关系分类
②设 不好想时就设,问什么设什么
③列 纵向寻找同类数量关系列方程,以用过的数量关系不可以列方程
④解
⑤答 隐含条件的挖掘

七、一元一次不等式(组)
1、不等式性质:与等式性质作比较
①如果a>b,那么a+c>b+c,a-c>b-c;
②如果a>b,且c>0,那么ac>bc;
③如果a>b,且c<0,那么ac<bc.
2、解法步骤
序号 步骤 注意点
1 去分母 最小公倍数、漏乘
2 去括号 变号
3 移项 变号尽量使未知数的系数为正、变号
4 合并同类项 尽可能与移项同时进行
5 系数化为1 ①除以未知数的系数(乘以倒数)
②注意系数为负时改变不等号方向
3、一元一次不等式组
①分别解一元一次不等式

4、数学内应用
找不等式模型(关键字词)
问题的转化

5、实际应用题
①审

③列
④解
⑤答注意隐含条件

八、一元二次方程
1、 定义:一般式:ax2+bx+c =0(a≠0)
2、 解法:
①直接开平方法。(px+q)2=r (p≠0 r≥0)
②因式分解法
③配方法
④公式法:先把一元二次方程化成一般式:ax2+bx+c =0(a≠0),在b2-4ac≥0时公式是x= (b2-4ac≥0)
*思想:降次
3、 根:
① 定义

4、 应用
①审 找题中基本数量关系,用适当名称给数量关系分类
②设 不好想时就设,问什么设什么
③列 纵向寻找同类数量关系列方程,以用过的数量关系不可以列方程
④解
⑤验 看根是否满足题意
⑥答

九、分式方程
1、解法
①在分式方程的两边同乘以最简公分母,化去分母,化成整式方程;
②解这个整式方程;
③验根。在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根。
2、增根
使整式方程成立而分式方程无意义的未知数的值
3、应用
①审 找题中基本数量关系,用适当名称给数量关系分类
②设 不好想时就设,问什么设什么
③列 纵向寻找同类数量关系列方程,以用过的数量关系不可以列方程
④解
⑤验 看根是否满足题意
⑥答

‘拾’ 新初一数学暑假作业(浙江教育出版社)

亲和数:
220,284/1184,1210/2620,2924/5020,5564/6232,6368/10744,10856/12285,14595/
17296,18416/63020,76084/66928,66992/67095,71145/69615,87633/79750,88730/
100485,124155/122265,139815/122368,123152/141664,153176/142310,168730/
171856,176336/180848,176272/185368,203432/196724,202444/280540,365084/
308620,389924/319550,430402/356408,399592/437456,455344/469028,486178/
503056,514736/522405,525916/600392,669688/609928,686072/624184,691256/
635624,712216/643336,652664/667964,783556/726104,796696/802725,863835/
879712,901424/898216,980984/947835,1125765/9980104,1043096/9363544,9437056
最长链:
14316 - 19116 - 31704 - 47616 - 83328 - 177792 - 295488 - 629072 - 589786 - 294896 - 358336 - 418904 - 366556 - 274924 - 275444 - 243760 - 376736 - 318028 - 285778 - 152990 - 122410 - 97946 - 48976 - 45946 - 22976 - 22744 - 19916 - 17716 - 14316

...........
1184和1210是亲和数