当前位置:首页 » 经典古典 » 牛顿怎么一步一步发展经典力学的
扩展阅读
历史上如何进行淑女教育 2025-02-14 02:56:20
幼儿园双簧知识 2025-02-14 02:56:19
sup游戏机哪些是经典的 2025-02-14 02:56:12

牛顿怎么一步一步发展经典力学的

发布时间: 2022-05-28 14:34:42

Ⅰ 简述经典力学的发展过程,举例其中重要人物的贡献。结合牛顿自然哲学思想谈谈自己的体会。

古希腊的哲学家,包括亚里士多德在内,可能是最早提出“万有之本,必涵其因”论点,以及 经典力学用抽象的哲理尝试敲解大自然奥秘的思想家。当然,对于现代读者而言,许多仍旧存留下来的思想是蛮有道理的,但并没有无懈可击的数学理论与对照实验来阐明跟证实。而这些方法乃现代科学,如经典力学,能形成的最基本因素。
开普勒是第一位要求用因果关系来诠释星体运动的科学家。他从第谷·布拉赫对火星的天文观测资料里发现了火星公转的轨道是椭圆形的。这与中世纪思维的切割大约发生在西元1600年。差不多于同时,伽利略用抽象的数学定律来解释质点运动。传说他曾经做过一个着名的实验:从比萨斜塔扔下两个不同质量的球来试验它们是否同时落地。虽然这传说很可能不实,但他确实做过斜面上滚球的数量实验;他的加速运动论显然是由这些结果推导出的,而且成为了经典力学上的基石。
牛顿在他的巨着《自然哲学的数学原理》里发表了三条牛顿运动定律;惯性定律,加速度定律,和作用与反作用定律。他示范了这些定律能支配着普通物体与天体的运动。特别值得一提的是,他研究出开普勒定律在理论方面的详解。牛顿先前已创发的微积分是研究经典力学所必备的数学工具。
牛顿和大多数那个年代的同仁,除了惠更斯着名的例外,都认为经典力学应可以诠释所有大自然显示的现象,包括用其分支,几何光学,来解释光波。甚至于当他发现了牛顿环(一个光波干涉现象), 经典力学牛顿仍然使用自己的光微粒学说来解释。
十九世纪后期,尖端的理论与实验挖掘出许多扑朔迷离的难题。经典力学与热力学的连结导至出经典统计力学的吉布斯佯谬(熵混合不连续特性)。在原子物理的领域,原子辐射呈现线状光谱,而不是连续光谱。众位大师尽心竭力研究这些难题,引导发展出现代的量子力学。同样的,因为经典电磁学和经典力学在座标变换时的互相矛盾,终就创发出惊世的相对论。
自二十世纪末后,不再能虎山独行的经典力学,已与经典电磁学被牢牢的嵌入相对论和量子力学里面,成为在非相对论性和非量子力学性的极限,研究质点的学问

经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。

Ⅱ 经典力学的发展

力学是物理学中发展较早的一个分支。古希腊着名的哲学家亚里士多德曾对“力和运动”提出过许多观点,例如“力是维持物体运动状态的原因”,“两个重物,较重的下落较快”等。
他的着作一度被当作古代世界学术的网络全书,在西方有着极大的影响,以致他的很多错误观点在长达2000年的岁月中被大多数人所接受。 人们开始通过科学实验,对力学现象进行准确的研究。许多物理学家、天文学家如哥白尼、布鲁诺、伽利略、开普勒等,做了很多艰巨的工作,经典力学逐渐摆脱传统观念的束缚,有了很大的进展。
英国科学家牛顿在前人研究和实践的基础上,经过长期的实验观测、数学计算和深入思考,提出了力学三大定律和万有引力定律,把天体力学和地球上物体的力学统一起来,建立了系统的经典力学理论。经典力学概括来说,是由伽利略及其时代的优秀物理学家奠基,由牛顿正式建立。所以牛顿曾说过,他是站在了巨人的肩膀上。 由伽利略和牛顿等人发展出来的力学,着重于分析位移、速度、加速度、力等等矢量间的关系,又称为矢量力学。它是工程和日常生活中最常用的表述方式,但并不是唯一的表述方式:拉格朗日、哈密顿、卡尔·雅可比等发展了经典力学的新的表述形式,即所谓分析力学。分析力学所建立的框架是现代物理的基础,如量子场论、广义相对论、量子引力等。
微分几何的发展为经典力学注入了蒸蒸日盛的生命力,是研究现代经典力学的主要数学工具。 现代力学推翻了绝对空间的概念:即在不同空间发生的事件是绝然不同的。例如,静挂在移动的火车车厢内的时钟,对于站在车厢外的观察者来说是呈移动状态的。但是,经典力学仍然确认时间是绝对不变的。
在日常经验范围中,采用经典力学可以计算出精确的结果。但是,在接近光速的高速度或强大引力场的系统中,经典力学已被相对论力学取代;在小距离尺度系统中又被量子力学取代;在同时具有上述两种特性的系统中则被相对论性量子场论取代。虽然如此,经典力学仍旧是非常有用的。因为:它比上述理论简单且易于应用。
虽然经典力学和其他“经典”理论(如经典电磁学和热力学)大致相容,在十九世纪末,还是发现出有些只有现代物理才能解释的不一致性。特别是,经典非相对论电动力学预言光速在以太内是常数,经典力学无法解释这预测,并导致了狭义相对论的发展。经典力学和经典热力学的结合又导出吉布斯佯谬(熵无定义)和紫外灾难(黑体发射无穷能量)。为解决这些问题的努力造成了量子力学的发展。

Ⅲ 牛顿对经典力学的贡献

在天文学方面,牛顿可以称为近代伟大天文学家。他的杰出贡献是制作了反射式望远镜,反射式望远镜的制造成功,是天文学史上的一项重大革新。自伽利略发明第一架天文望远镜以来,人们对于宇宙的认识范围迅速扩展,但是当时流行的伽利略、开普勒等人发明和制造的折射望远镜,口径有限,制造大型望远镜不但困难,而且太庞大,同时折射望远镜的折射色差和球差都很大,这些大大限制了天文观测的范围。牛顿由于了解了白光的组成,因而于1668年设计制成了第一架反射式望远镜。这种望远镜能反射较广光谱范围的光而无色差,容易获得较大的口径,同时对球差也有校正。这样牛顿为现代大型天文望远镜的制造奠定了基础。

牛顿在天文学上的另一重要贡献是对行星的运动规律进行了全面考察,特别是对开普勒等人的学说进行过系统的研究。1686年他在给哈雷的信中说明了天体可以按照质点处理并证明了开普勒的行星运动的椭圆形轨道以及彗星的抛物线轨道。牛顿还进一步发展了自己的理论,认为行星都由于自转而使两极扁平赤道突出,还预言地球也是这样的球体。由于地球不是正球体,牛顿就指出,太阳和月球的引力摄动将不会通过地球中心,因此地轴将作一缓慢的圆锥运动,这便出现了二分点的岁差现象。对于潮汐现象,牛顿也作出了解释,他认为这是太阳和月球引力造成的。

英国物理学家、数学家、天文学家,经典物理学的创始人。1642年12月25日生于林肯夏郡沃斯索普村一个农民家庭。牛顿在出生前3个月父亲便去世了。3岁时母亲改嫁,他由外祖母抚养。1654年牛顿开始读小学,后在舅父的资助下进入格兰山姆镇皇家中学。1661年进入剑桥大学三一学院。1663年,三一学院创办自然科学讲座,牛顿成为了数学家伊萨克枣巴罗(Isaac Barrow, 1630-1677)教授的学生,1664年成为巴罗的助手。1665年获文学学士学位,1665年至1667年为躲避瘟疫回到家乡。1667年牛顿又回到剑桥大学,并被选为选修课的教研员。1668年3月任专修课教研员,同年获硕士学位。1669年巴罗辞去职务,以让牛顿晋升为数学教授。1670年牛顿又担任了卢卡斯讲座教授。1672年他被选为皇家学会会员,此后一直在剑桥大学工作。1689年被选为代表剑桥大学的国会议员。1696年他被任命为造币厂督办,迁居伦敦。1699年担任了造币厂厂长。1701年牛顿辞去剑桥大学教授职位,退出三一学院。1703年被选为皇家学会会长。1705年受封勋爵,成为贵族。1727年3月20日逝世于肯新顿村,终年85岁,终生未娶。

牛顿是科学发展史上举世闻名的巨人。他奠定了近代科学理论基础,是以正确的思维方法指导科学研究的代表。他是一位自强、勤奋的“天才”,为世界自然科学的发展作出了不可磨灭的贡献,成为近代科学的象征。他的科学贡献代表了当时新生资产阶级的利益,因为他为他的国家作出了巨大贡献,死后葬于威斯敏斯特教堂。

少年时期的牛顿,便显示出了出众的才能。他所精心制作的许多小机械,如风车、风筝、滴漏时钟、日圭仪等,引起了多人的注重和好评。牛顿的一生大部分时间从事科学实践、教学和理论的研究。从1672年他发表第一篇论文起,一生写出了多部极其着名的着作,如1686年写成,1687年出版的《自然哲学的数学原理》、1704年出版的《光学》等,在科学史上都具有重要价值。他在数学、物理学、天文学等多方面创造了惊人的奇迹。在数学方面,牛顿是微积分的创始人之一,同莱布尼兹一道名垂千古。1665年,牛顿在23岁时便发现了“二项式定理”和“流数法”,“流数法”就是现代所说的微分法。同时他还发现了流数法反演,即积分法。微积分的创立,是近代数学史上的一次重大变革,是真正的变量数学,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。

在物理学方面,牛顿取得了力学、热学、光学等多方面的巨大成就。牛顿是经典力学理论的开创者。他在伽利略等人工作的基础上,进行了深入研究,经过大量的实验,总结出了运动三定律,创立了经典力学体系。牛顿所研究的机械运动规律,首先是建立在绝对时空观基础之上的。绝对化的时间和绝对化的空间是指不受物体运动状态影响的时间和空间。在两个匀速运动状态下的观察者,对机械运动具有相同的测量结果。在高速运动状态下,这种时空观已不能采用,这时(运动速度与光速可以比拟),牛顿力学将被相对论力学所代替。在微观情况下,由于粒子的波动性已明显表现出来,牛顿力学将被量子力学所代替。牛顿在力学方面另一巨大贡献是在开普勒等人工作的基础上,发现了万有引力定律。牛顿认为:太阳吸引行星,行星吸引卫星,以及吸引地面上一切物体的力都是具有相同性质的力。牛顿用微积分证明了,任何一曲线运动的质点,如果半径指向静止或匀速直线运动的点,且绕次点扫过与时间成正比的面积,则此质点必受指向该点的向心力的作用,如果环绕的周期之平方与半径的立方成正比,则向心力与半径的平方成反比。牛顿还在力学发展中,首先确定了一系列的基本概念,如质量、动量、惯性和力等。经过牛顿的工作,力学已形成了严密、完整、系统的科学体系。

在热学方面,牛顿确立了冷却定律。他指出:当物体表面与周围存在温度差时,单位时间内从单位面积上散失的热量与这一温度差成正比。

在光学方面,牛顿同样取得了巨大成果。牛顿是白光组成的最早发现者,1666年他利用三棱镜进行了着名的色散实验,发现白光可以分解为多种颜色的光谱带。同时他还作出了多色光合成白光的实验。牛顿对各色光的折射率进行了精确分析,说明了色散现象的本质。他指出,由于物质对不同颜色光得折射率和反射率不同,才造成了物体颜色的差别,从而揭开了颜色之谜。对于光的本性,牛顿提出了光的“微粒说”。他的观点一定程度上反映了光的本质。他认为,光是由微粒形成,并且走的是快速的直线运动路径。应用光的微粒说可以很好地解释光的反射和折射现象,但对于衍射现象却无能为力。微粒说是关于光的本性的重要理论之一,他同惠更斯的波动说共同构成了关于光的两大基本理论。现代科学证明,任何物质都具有波粒二象性。牛顿在光学方面还有许多发现和研究成果。如1666年他制作了牛顿色盘;1675年曾利用凸透镜和平板玻璃观察到了一种干涉图样,称为牛顿环等。他对牛顿环进行过精细的测量,但是没有能够作出满意的解释。此外牛顿还研究制成了多种光学仪器,在天文观测中有广泛的应用。

牛顿的哲学思想基本属于自发的唯物主义思想。他承认时间、空间的客观存在,但却把它们看成是与运动着的物质相脱离的。他所提出的形而上学的绝对时空观,虽然在解决宏观低速下运动物体的运动规律时能很好的适用,但在离开宏观低速的条件时,便无能为力了。

牛顿对于宇宙的解释也是和笛卡儿等人一样,承认神是“第一推动力”,后来的牛顿可以说完全陷入了唯心主义。他的全部成就几乎都是在45岁以前取得的,尤其集中在23岁以前。以后的四十年中则完全陷入了对神学的研究,他在神学方面的研究手稿竟有1,500,000字之多

Ⅳ 牛顿 经典力学形成的历史背景

1、它以质点为对象,着眼于力的概念,在处理质点系统问题时,须分别考虑各个质点所受的力,然后来推断整个质点系统的运动。牛顿力学认为质量和能量各自独立存在,且各自守恒,它只适用于物体运动速度远小于光速的范围。牛顿力学较多采用直观的几何方法,在解决简单的力学问题时,比分析力学方便简单。

2、17世纪的欧洲,经过许多科学家的努力,在天文学和力学方面积累了丰富资料的基础上,英国科学家牛顿实现了天上力学和地上力学的综合,形成了统一的力学体系——经典力学。经典力学体系的建立,是人类认识自然及历史的第一次大飞跃和理论的大综合,它开辟了一个新的时代,并对科学发展的进程以及人类生产生活和思维方式产生及其深刻的影响。牛顿经典力学的建立是科学形态上的重要变革,标志着近代理论自然科学的诞生,并成为其他各门自然科学的典范

Ⅳ 牛顿经典力学出现的条件

牛顿的经典力学主要分为三大定律,即牛顿一定律,牛顿二定律,牛顿第三定律。还有万有引力定律,两个假定式,后来因为爱因斯坦的相对论,更加即以发展

Ⅵ 牛顿创立经典力学理论的行程历史背景

背景:①受文艺复兴运动的影响,科学逐渐从神学的桎梏中解放出来,进入到实验科学的时代。②以伽利略为代表的科学家奠定了经典力学的理论基础。③17世纪英国资本主义经济的迅速发展。工场手工业时期经济上的需要。

Ⅶ 相对论对于牛顿力学体系的科学思想发展历程

在经典力学取得很大成功以后,人们习惯于将一切现象都归结为由机械运动所引起的。在电磁场概念提出以后,人们假设存在一种名叫“以太”的媒质,它弥漫于整个宇宙,渗透到所有的物体中,绝对静止不动,没有质量,对物体的运动不产生任何阻力,也不受万有引力的影响。可以将以太作为一个绝对静止的参照系,因此相对于以太作匀速运动的参照系都是惯性参照系。

在惯性参照系中观察,电磁波的传播速度应该随着波的传播方向而改变。但实验表明,在不同的、相对作匀速运动的惯性参照系中,测得的光速同传播方向无关。特别是迈克尔逊和莫雷进行的非常精确的实验,可靠地证明了这一点。这一实验事实显然同经典物理学中关于时间、空间和以太的概念相矛盾。爱因斯坦从这些实验事实出发,对空间、时间的概念进行了深刻的分析,提出了狭义相对论,从而建立了新的时空观念。

狭义相对论的基本假设是:
①在一切惯性参照系中,基本物理规律都一样,都可用同一组数学方程来表达;
②对于任何一个光源发出来的光,在一切惯性参照系中测量其传播速率,结果都相等。

在狭义相对论中,空间和时间是彼此密切联系的统一体,空间距离是相对的,时间也是相对的。因此尺的长短,时间的长短都是相对的。但在狭义相对论中,并不是一切都是相对的。

相对论力学的另一个重要结论是:质量和能量是可以相互转化的。假使质量是物质的量的一种度量,能量是运动的量的一种度量,则上面的结论:物质和运动之间存在着不可分割的联系,不存在没有运动的物质,也不存在没有物质的运动,两者可以相互转化。这一规律己在核能的研究和实践中得到了证实。

当物体的速度远小于光速时,相对论力学定律就趋近于经典力学定律。固此在低速运动时,经典力学定律仍然是很好的相对真理,非常适合用来解决工程技术中的力学问题。

狭义相对论对空间和时间的概念进行了革命性的变革,并且否定了以太的概念,肯定了电磁场是一种独立的、物质存在的恃殊形式。由于空间和时间是物质存在的普遍形式,因此狭义相对论对于物理学产生了广泛而又深远的影响。

关于相对论和时间、空间的关系,在前面的文章中实际上已经结束了。又涉及的概念和说明的方法很杂乱,这里进行系统的整理一下,并对前面一些文章中的看法进行修正一下。为了便于总览整体的轮廓,这里只进行关键性的问题说明,您可以查阅前面的文章。

时间和空间的两种定义方法

牛顿力学中的时间概念来源于人们对物质运动变化的经验感觉,并选定一个统一的定量标准去对物质运动变化进行定量,实际上这是采用一种物质运动变化的度量流程标准去对另一种物质运动变化进行度量。并且对这一度量流程绝对的均匀化,理想化。以至于是可以采用数学化的绝对均匀描述。比如两个时刻之间可以采用任意均匀的间隔进行描述。从物质事件的进程中我们可以向前或者向后无限的延伸。即通常所说的延绵。并且,这样的时间定义于我们所采用的任何参照系是无关的。关于这一问题,您可参见时间的经验感觉。牛顿力学对空间的处理也同样是这样,采用标准距离去定义物体的长度。实际上,牛顿力学已经将时间和空间纯粹的理想化,并采用数学化的方式进行描述。牛顿力学中时间和空间概念是脱离于物质运动的定义的。因此,时间与空间在牛顿力学中是最基本的物理单位。

举个例子来说,热胀冷缩:一个物体发生热胀冷缩,我们不能判断物体所在的空间发生膨胀,而仅将物体这种膨胀属性归因于物体的结构在不同温度下所发生的常规现象,我们知道,实际上,温度的不同,物体分子间的相互作用是不同的。我们不是将这种作用加到空间上,而判断物体发生了空间膨胀,实际上,如果我们将空间的属性判断为物质的属性,那么这样的说法也未尝不可。因此,牛顿力学中的时间和空间是一种绝对理想化的物理量,它不依赖于物质的作用属性。

相对论中的时间观念却不是这样了,它是在处理参照系的问题时而引入的新的概念。

首先,它依赖于这样的假设——光速于参照系无关。并且,这样的观测在科学是上可以说是已经通过实验证实的观点。需要说明一下的是,在当时的科学范围内,通常都普遍认为物质间的相互作用主要是电磁作用,(万有引力由于在近距离处物质间的相互作用是可以忽略不计的)。电荷之间在相同的参照系中只有静电力的作用,但是在不同的参照系之间却存在磁场的作用,也就是说,在不同的参照系之间,电荷属性是不同的,那么,我们没有理由认为在不同的参照系中物质的属性状态(反映在电磁属性上)是相同的。那么,在相同的两个参照系中物质运动的进程中,我们也没有理由认为是相同的。同时,物质的结构属性我们也没有理由认为是相同的。也可以说是经验事实的相对性原理。

在这样的前提下,相对论假设在运动参照系中物质的运动变化进程会减缓,同时,物质间的电磁相互作用也会发生变化,主要表现为沿运动方向,物体的长度会发生变化,相对论判定为沿运动方向物体的长度发生收缩。即通常我们所说的“时间膨胀”和“尺缩”现象。并确定时间和空间在不同参照系中的变化因子为。

同时,爱因斯坦先生采用光信号传递的模式对同时性也进行了相对性处理。这样,相对论和牛顿力学的时空观念就构成了两种独立的定义系统。

的确,这样的假设我们找不出任何不合理的直接依据。

我们可以看到,相对论的时间与空间观念与物质运动有着最为直接的联系,时间与空间的属性、状态依赖于物质的运动。

在相对论、牛顿力学中时间空间和基本概念间的逻辑关系

1、牛顿力学时间和空间的结构模式

在牛顿力学中,时间和空间的概念来源于人类日常生活中的经验约定,那么,时间和空间和物理量间的关系也来源于这种经验约定。主要表现在如下两个约定:
一、一个事件的唯一确定性。

我们描述一个物体,或者某一个事件,它的本身不会因为我们对它的不同观测而它自身的属性发生变化。比如一个物体的属性、一个事件的进程。

二、定义的标准

牛顿力学采用理想的定义标准模式。

对于时间的模式,采用标准的物质运动周期作为定量时间的模式。比如地球绕太阳公转一周叫做一年,我们不论采用如何观测,这一年必须是地球绕太阳一周,对于这一事件进程而言,这是一种理想的不变的恒量。并且与观测无关。

空间的模式,通常是反映在长度单位上。也是采用标准的不变的物体属性模式。比如1989年米制公约计量大会上,决定将存档米原器的复制品规定为*米国际原器。其为铂铱合金,当温度为零度,用规定方法支撑时,其上两刻线之间的距离规定为一米。(参考《简明物理学辞典》许国宝 王福山主编 上海辞书出版社)
我们不论采用何种观测方法,它的长度单位在这样限定的条件下是一种恒量。

时间和空间通过这种约定,确定了时间和空间的计量模式,但是这样的计量模式,仅是作为我们计量单位的一种标准。在牛顿力学中,对于时间和空间的属性作了进一步的延伸。虽然我们采用了物质属性的模式定义了空间的单位,通过事件进程的模式定义了时间的单位,但是时间和空间的本身却是于物质无关的抽象属性。不论有没有事件的进程变化,我们仍然确定时间在延绵。不论有没有物质的存在,我们都可以想象到空间。牛顿力学,关键的在于采用时间和空间定义的标准对物质的存在状态进行定量,并进而延伸到时间和空间是纯粹的物理量。

2、相对论的时间和空间的结构模式

相对论则恰恰是另外一种模式,它是随科学的进一步发展而确定的另一种对时间和空间的定义模式。导致这样一种定义模式的非常有利的一个经验事实是光速与光源的运动无关,通常认为在一个世纪以前就已经获得了证明。
为了调节参照系与光速的关系,在科学体系中引入了相对性原理。(相对性原理也是经验感觉,我们找不出什么理由怀疑这一原理在处理参照系的属性上存在问题,这是经验感觉)但是,这样一种引进把物质带入到电磁相互作用的属性中,不论是时间还是空间,都使物质的本身带有电磁相互作用的特点。这样的一种结论和当时的科学进程是分不开的,在当时的科学看法中,电磁间的相互作用构成了物质世界,这样一种说法并不过分。在原子层次到宏观的物质的结构中,电磁相互作用是一种首要的相互作用。物质的属性依赖于电磁属性作为一种判断是很有道理的。

相对论对物质运动的处理,首先它依赖于如下两个目前和经验事实相符的假定:

一、光速不变原理

光速为恒值是目前公认的看法,这里我们不便对其进行探讨。

二、相对性原理

相对性原理是狭义相对论的核心,它决定着相对论是否可以作为一个独立的描述体系的关键。

建立在如上两个假设的基础上,相对论提出了两种效应来调节光速的实验事实和理论相符。一种是时间膨胀,另一种是时间收缩。

经过如上的处理,相对论就将物质的运动和时间空间在理论上严格的结合在一起。通过相对论的这种调节物质属性的关系,那么时间和空间就归到物质间的相互作上,如果光速是一个不变的恒量,那么在不同的参照系中,物质的属性就存在不同。

这样,相对论的结果缩小了相对性原理的范围,(各个参照系间的物质间的属性只是在本参照系和其他参照系的比较中,具有这种等同的性质,相对于物质的运动变化来说,这是相对形原理的一种体验)在内在的逻辑关系上,相对性原理不再具有普适性。这样的代价是我们对物质世界的相互作用的真实推进了一步,或者说获得了可能性的一种解释。比如:我们不能判断同样的一个钟表在低速和高速两种状态下,其走时是否相同。在强引力场和弱引力场中,性能相同的两个钟表的走时会一模一样。如果我们将物质的运动变化归因于物质间的相互作用中,这样的解释对于物质世界而言是接近真实的。

3、牛顿力学和相对论两种描述体系的描述结构

关于这一问题,在参照系、观测与物体的速度的最后作了分析,这里我在进一步的说明一下。

一、两种定义体系的基础

由于牛顿力学确定了一个物理事件不依赖于我们的观察,那么在任何观测参照系中,一个物理事件是一个不变的恒量,通常采用牛顿力学去处理物理问题时采用物理事件的真实去矫正我们观测到的结果。一个物理事件绝对性的地位决定了我们在对物理事件测量过程中,我们的观测要服从于物理事件的真实性。而不是我们的观测结果,比如不同参照系中同时性的定义:不论我们采用任何一种确定同时性的模式,我们首先确定我们的测定模式在两个参照系中测量的差异,排除掉光线传播、测量仪器以及其他不能判定同时性的因素,排除误差。一个事件发生的任意一个时刻是唯一确定的。

但相对论却不是这样了,它确定了一个物理事件依赖于我们的观测,讲求采用不同的参照系所观测到一个物理事件的结论。严格来说,相对论以观测过程中我们得到的结果,作为通过不同参照系对同一物理事件进行观测而得到的不同结论。相对论依赖于我们通过确定的方法而得到的结论。将观测的结果判定为我们获得物理世界真实性的的体验。在相对论中,我们观测的结果是首要的问题,物理事件的本身依赖于在不同参照系中的观测。当然,还必须加上这样的物理事实结论,物理事件的过程依赖于物质间的作用。

二、两种定义体系的方法

前面我们已经讨论过,牛顿力学对时间和空间的定义方法实际上是采用了一种绝对的标准,这种标准不依赖于物质本身的属性,牛顿力学对时间和空间采用纯粹数学化理想化的方法进行描述。

在牛顿力学中,我们定义了参照系。通常我们是采用参照系的空间标度对物体在空间中的位置进行描述。通常将物体在运动中的路线叫做物体在空间中运动轨迹。我们都可以将物体在空间中的任意位置通过参照系的标度而确定物体在空间中的位置。即便我们采用两种惯性参照系,我们仍然可以在两个参照系中进行变换。物体在空间位置上的这种绝对化的时间和空间的这种参照系,我们通常将他们叫作伽利略参照系,通常将这种变换叫做伽利略变换。当我们采用伽利略变换的时候,我们不应忘记,这里所采用的是绝对的时间和空间观念。时间和空间概念是一种绝对理想标准的概念。

在相对论中则不再是这样的了。

相对论的时间和空间观念依赖于物质的运动,并将物质运动过程中不同的属性赋予到物质运动计量过程中的时间和空间的观念中。在这种计量过程中,时间和空间的观念施加了物质运动的作用属性。在相对论中是通过光速不变的观念来实现的,可以认为这种作用是物质运动的不同状态中的电磁属性的不同。

相对论中的时间和空间的属性不再是与物质的运动无关的属性,在时间和空间的观念中还标志着两种参照系物质属性电磁作用的差异。同时,时间和空间的概念不再是理想的单位,而是与不同参照系中物质属性电磁作用差异的反应。

因此,在牛顿力学和相对论力学中的时间和空间的观念,我们是不能混用的。牛顿力学中一个单位的时间不等于相对论力学中一个单位的时间。同样,牛顿力学中的一个空间单位,也不等于相对论力学中的一个空间单位。

三、两种定义体系描述的模式

牛顿力学中时间和空间对于描述体系而言是简单的。是通过空间坐标和时间标准的理想模式对物体运动变化进程进行描述。我们在描述过程中所采用的时间和空间单位是我们所定义的标准的单位,或者说是我们所采用的参照系本身的定义标准。

在相对论中,则较为复杂一些了。首先我们采用我们所确定的静止参照系中的时间和空间标准去确定运动物体相对于我们所采用的惯性参照系的相对运动状态,从而确定物体在它本身的惯性参照系中的时间和空间,这样才可以采用相对论的时间和空间的观念进行描述。

在牛顿力学中,我们是采用静止参照系中的时间和空间对物质的运动变化进行描述,而在相对论中我们确是采用的物体运动参照系中的时间和空间标准进行描述的。两种参照系中我们所采用的时间和空间的标准是不同的。关于这一问题,请您参见 参照系、观测与物体的速度,那里有对这一问题的较为详细的说明。

四、牛顿力学和相对论两种时间观念在实际应用上的矛盾。

在牛顿力学和相对论的两种对时间和空间的定义体系中,包含着两种对物理时间和空间的描述方法。牛顿力学中以物体的本体作为我们观测的描述体,以及相对论采用我们观测的结果作为我们对物理事件的描述。两种方法在侧重点上是绝对不同的。

在牛顿力学中,物体是存在的事实,我们采用何种方法去确定物体的存在本身与物体的真实存在是无关的,我们所要作的是如何减少观测的误差、如何根据物体在不同环境中的属性去判断物体的真实大小,而不是物体的空间变化引起的物体的属性的改变。相对于高速而言,物体的空间大小对于牛顿力学来说是很难确定的。我们不能确定我们观测到的物体的状态就是物体的真实状态,因为我们不能确定物体的作用属性在不同的运动状态中是否相同,这也是牛顿力学在高速问题中所存在的困难。

在牛顿力学中,请不要忘记,时间和空间的观念是理想的时间和空间观念。它不依赖于物质对外作用的属性。牛顿力学是采用观测参照系作为计量时间和空间的标准。

相对论则不同了,它首先通过静止参照系去观察物体的高速状态,并进而确定这一状态,并在这种观测的基础上,确定物体在高速状态时的时间和空间属性。物体在不同参照系间的时间和空间标准,只是相对于不同的惯性参照系来说,任意一个惯性参照系都有一个时间和空间标准,我们不能对两个惯性参照系的观测结果进行任何的比较。一个惯性参照系中的一秒不等于另一个惯性参照系中的一秒。除非我们对两个惯性参照系中的时间单位建立当量关系。

如果建立当量的关系,则出现我曾在本站中所说的时间悖缪。这样,相对论内部的逻辑关系就出现问题了。

在实际应用中,两个惯性参照系之间的当量关系在相对论的原理上原则上是不能建立的,因为在两个惯性参照系中的同时性是相对的。但是,通过其他的方法可以在两个惯性参照系中建立绝对的同时性(可参见本站相关的文章),这样我们可以在两个惯性参照系中建立当量关系。请注意,这里所说的当量关系不是牛顿力学和相对论之间的当量关系,而是相对论两个惯性参照系之间的关系。

如何看待牛顿力学和相对论中所出现的矛盾问题

1、牛顿力学

在处理高速问题的过程中,牛顿的理想的时间和空间观念在实际的应用中会出现不能确定的现象,我们不能确定牛顿力学中的理想的时间和空间观念,和我们观测到的物体的属性所反映出来的时间和空间观念是否相同。常规的定义方法中所采用的标准的时间和空间观念只是我们所采用的一种定义标准,这种标准我们是建立在一种观测参照系的基础上,我们不能确定相对于此的高速惯性参照系中的时间和空间观念在普遍的物质间的相互作用上是否存在某种不同。牛顿力学所定义的标准的时间和空间标准是与参照系无关的。以当时的科学技术水平,是没有能力去解决这样的问题的。

一种解决方法是保持牛顿力学中的时间和空间的定义方法不变,而采用物质的属性随物体的运动状态的变化而变化。通俗一点的讲,就是牛顿力学中的时间和空间仍然采用绝对的时间和空间,物体在确定运动状态而反映出的与静止参照系不同的属性,我们将它归因于物体的运动状态上,而不是改变时间和空间的定义。

这样的定义是有应用前景的。首先,我们不论对任何运动物体进行观测,我们首先必须建立一个惯性参照系去对其进行描述。以目前人类所可能的观测范围,通常都是采用我们自身的惯性参照系进行观测的,那么我们采用我们本身的时间和空间去对整个我们可观测的宇宙范围的时间和空间进行定义,那么并没有超出我们在宇宙中可能性的应用中的时间和空间的属性的范围。当然,在实际应用中,不同的惯性参照系间的时间和空间的计量问题,通过物体在不同惯性参照系中的属性不同去进行调节将是不太方便的。我们将涉及到比较复杂的描述上的变换。但是,这样做也同时赢得了我们在理解上的方便,这样的时间和空间的观念和我们日常生活中的时间和空间观念是相同的。

2、相对论

相对论在数学描述上通常被看作是非常完美的一个物理理论,但是在实际的应用过程中,却几乎没有实际应用的价值。这来源于如下的两点:

一、相对论建立了两个惯性参照系间的时间和空间的关系,但是却建立了一个相对的同时性。时间和空间的观念在不同的参照系中存在着不同。

如果我们去定量在空间中的一个运动的物体,首先我们必须在时间和空间上对这个物体进行定量。确定物体在某一时刻所在的空间位置。由于我们在相对论中所采用的时间的同时性是相对的。我们实际上不能从观测参照系去确定某一时刻和运动物体的某一时刻的对应性,这样我们不能确定物体所在的某一时刻。
在空间的概念上,我们所采用的空间概念是不同的,我们不能确定观测参照系中我们所观测到的物体的某一个位置和在运动参照系中所确定的某一位置是否是相同的位置。

这样,在实际应用中,我们对物体所进行的基本的描述在相对论中很难实现。

二、相对论将物体在不同惯性参照系运动过程中所表现出的事件进程属性间的不同归之于时间观念的不同,如钟表在不同参照系间的走时是不同的,即时间膨胀。同时,将物体在不同惯性参照系运动过程中所表现出的空间位置属性间的不同归之于空间观念的不同。如“尺缩”效应。

我在这里姑且不论这两种相对论效应是否成立,暂时就假设这两种现象在高速运动的惯性参照系中是成立的。
我们知道,事件的进程依赖于改变事物向前发展的环境和动力。对于一个物理事件,如加速一个物体的过程。依赖于两种条件:一种是物体的质量,另一种是推动物体的力。任意一个条件的改变,都会导致加速这个物体进程的改变。当然,相对论的内在的逻辑关系绝不是这样的简单,而是在不同的惯性参照系,物理事件进程的属性和空间位置间相互作用的属性发生改变。如果我们将这种改变归因于时间和空间的改变,那么这样的时间和空间实际上包含了物体相互作用的属性。这样的概念我们又如何采用通用的时间单位秒和长度单位米来讨论时间和空间呢?!我们可以肯定,这样的讨论实际上没有任何的意义。

当然,现代的科学对时间单位和空间单位进行了重新定义,通常是采用光的传播作为时间和长度的单位。我们可以肯定,这样的定义模式——采用光速的定义模式时间的单位一秒和空间的长度单位一米在,不同的惯性参照系中是不同的。这种不同是这种作用的属性的不同。那么一秒和一米在不同的惯性参照系里讨论是没有任何的意义的。

但是,这样的定义可以给与我们建立某种数值上的等量关系。这种量和时间和空间的观念是存在区别的。比如,在广义相对论中光线的传播是沿短时线运动的,这样的观点就包含了相互作用的特点。如果时间和空间的概念可以包括物质相互作用的属性,那么我们又何必建立力学的体系呢?

本文在这里列出了相对论内在逻辑哲学观念上的两点矛盾,关于概念上的矛盾您可以参见其它的文章,本站在以前的文章中对此的讨论已经很多了。

如果相对论对物理事件的描述在实验数值上是吻合的,那么,在逻辑上的问题仍然是不可以回避的。我们没有根据去排除物体事件在不同惯性参照系中的运动存在差异,但是,解释的方法并非只有归之于时间和空间可变的一种。

从方法论上来说,还存在其它的描述模式对物体在不同惯性参照系中运动属性的不同进行描述。另一方面,相对论完成物质运动状态和物质事件本身进程间的关系,无疑开创了对物理事件描述的一种新的领域。作为我个人而言,不赞成这种描述方法。因为它把物理基本概念间的关系和属性给混合起来,至少从方法论上来说,这不是对物理事件精确描述的科学方法。

(注:本文不是时间与空间的逻辑结构。它包含我原来对这篇文章的部分观点。由于我对新的时间和空间的看法还存在几个问题,也许近期不能得以解决,故将这部分观点写在这篇牛顿力学和相对论两种科学体系的哲学观念的分析中)

Ⅷ 牛顿是怎样在前人研究成果的基础上建立三个运动定律的他的主要贡献是什么

在牛顿的全部科学贡献中,数学成就占有突出的地位。他数学生涯中的第一项创造性成果就是发现了二项式定理。据牛顿本人回忆,他是在1664年和1665年间的冬天,在研读沃利斯博士的《无穷算术》并试图修改他的求圆面积的级数时发现这一定理的。 微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术"。它所处理的一些具体问题,如切线问题、求积问题、瞬时速度问题以及函数的极大和极小值问题等,在牛顿前已经得到人们的研究了。但牛顿超越了前人,他站在了更高的角度,对以往分散的努力加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。 1707年,牛顿的代数讲义经整理后出版,定名为《普遍算术》。他主要讨论了代数基础及其(通过解方程)在解决各类问题中的应用。书中陈述了代数基本概念与基本运算,用大量实例说明了如何将各类问题化为代数方程,同时对方程的根及其性质进行了深入探讨,引出了方程论方面的丰硕成果,如,他得出了方程的根与其判别式之间的关系,指出可以利用方程系数确定方程根之幂的和数,即“牛顿幂和公式”。 牛顿对解析几何与综合几何都有贡献。他在1736年出版的《解析几何》中引入了曲率中心,给出密切线圆(或称曲线圆)概念,提出曲率公式及计算曲线的曲率方法。并将自己的许多研究成果总结成专论《三次曲线枚举》,于1704年发表。此外,他的数学工作还涉及数值分析、概率论和初等数论等众多领域。 牛顿是经典力学理论理所当然的开创者。他系统的总结了伽利略、开普勒和惠更斯等人的工作,得到了着名的万有引力定律和牛顿运动三定律。 牛顿发现万有引力定律是他在自然科学中最辉煌的成就。那是在假期里,牛顿常常来到母亲的家中,在花园里小坐片刻。有一次,象以往屡次发生的那样,一个苹果从树上掉了下来。一个苹果的偶然落地,却是人类思想史的一个转折点,它使那个坐在花园里的人的头脑开了窍,引起他的沉思:究竟是什么原因使一切物体都受到差不多总是朝向地心的吸引呢?牛顿思索着。终于,他发现了对人类具有划时代意义的万有引力。他认为太阳吸引行星,行星吸引行星,以及吸引地面上一切物体的力都是具有相同性质的力,还用微积分证明了开普勒定律中太阳对行星的作用力是吸引力,证明了任何一曲线运动的质点,若是半径指向静止或匀速直线运动的点,且绕此点扫过与时间成正比的面积,则此质点必受指向该点的向心力的作用,如果环绕的周期之平方与半径的立方成正比,则向心力与半径的平方成反比。牛顿还通过了大量实验,证明了任何两物体之间都存在着吸引力,总结出了万有引力定律: (m1和m2是两物体的质量,r为两物体之间的距离)。在同一时期,雷恩、哈雷和胡克等科学家都在探索天体运动奥秘,其中以胡克较为突出,他早就意识到引力的平方反比定律,但他缺乏象牛顿那样的数学才能,不能得出定量的表示。 牛顿运动三定律是构成经典力学的理论基础。这些定律是在大量实验基础上总结出来的,是解决机械运动问题的基本理论依据。 1687年,牛顿出版了代表作《自然哲学的数学原理》,这是一部力学的经典着作。牛顿在这部书中,从力学的基本概念(质量、动量、惯性、力)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,建立了经典力学的完整而严密的体系,把天体力学和地面上的物体力学统一起来,实现了物理学史上第一次大的综合。 在光学方面,牛顿也取得了巨大成果。他利用三棱镜试验了白光分解为的有颜色的光,最早发现了白光的组成。他对各色光的折射率进行了精确分析,说明了色散现象的本质。他指出,由于对不同颜色的光的折射率和反射率不同,才造成物体颜色的差别,从而揭开了颜色之迷。牛顿还提出了光的“微粒说”,认为光是由微粒形成的,并且走的是最快速的直线运动路径。他的“微粒说”与后来惠更斯的“波动说”构成了关于光的两大基本理论。此外,他还制作了牛顿色盘和反射式望远镜等多种光学仪器。 牛顿的研究领域非常广泛,他在几乎每个他所涉足的科学领域都做出了重要的成绩。他研究过计温学,观测水沸腾或凝固时的固定温度,研究热物体的冷却律,以及其他一些只有在与他自己的主要成就想比较时,才显得逊色的课题。

Ⅸ 谁可以告诉我.经典力学的发展历程

力学发展可分为三阶段:

第一阶段 代表人物 牛顿 代表着作 《自然哲学的数学原理》:S
作为力学学科的开创人物——牛顿,他的最大贡献是:找到了制约自然界物质机械运动的相当普遍酌规律,同时也发明了研究这种规律的数学方法——微积分,也就是今天发展成为“分析”的数学学科. 但牛顿的模式把影响物体运动的原因统统归结为力.而实际上,大量的运动是受约束的运动.原则上说,约束对运动的作用虽确可以归结为力,但这些力就激未知的运动一样,是有待决定。牛顿模式对研究受约束系统的力学是不方便的.pm>M

第二阶段 代表人物 拉格朗日 代表着作 《分析力学》d\J&MY
一定的程度上克服了牛顿力学的上述困难,得到了力学系统在完全一般性广义坐标描述下具有不变形式的动力学方程组,并突出了能量函数随意义.系统实际上概括了比牛顿力学耍广泛得多的系统,同时它也提供了对力学系统的动力学,稳定性,振动过程作一般性研究的可能.另一重要发展是研究非完整系统.特别是非线性非完整系统的研究,导致了对分析动力学一系列基本按念,诸如虚位移,庞速度,db交换性,变分原理等作深入的探讨.6

第三阶段 代表人物 哈密顿 y+}
哈密顿对光学和力学之间深刻联系的思想促进了他对经典动力学作出创造性的研究.他的成就概要为两点:第一,力学的原理不仅可以按牛顿的方式来叙述,也可以按某种作用量(数学上是共种泛函)的逗留值(有时是极小值)方式来叙述.第二,力学的状态描述和动力学方程可以找到一种优美的正则形式以及等价的“波动形式”,这些形式有着极好的数学性质.