当前位置:首页 » 经典古典 » 量子力学与经典力学有哪些不同

量子力学与经典力学有哪些不同

发布时间: 2022-05-21 11:46:50

⑴ 量子力学跟经典力学有什么区别。

你好,我个人用简单的语言给你归纳下吧,望斟酌~经典力学是建立在因果律的基础上,而量子力学由于其不确定性原理所以和以因果律为基础的经典力学有很大的差别。量子力学是描述微观世界的理论,而经典力学顾名思义是“经典”的,也就是普通的,一般的我们常见的物理现象的理论

⑵ 经典力学与量子力学的区别和联系

经典力学和相对论力学都是说的宏观上的运动,但是经典力学只能说明物体在低速度下的运动,在经典力学中,运动是相对的,经典力学以牛顿为代表;而相对论力学,则说了物体在接近、等于甚至超过光速时的运动(举个例子,当人造卫星在绕地球运动时,就需要靠相对论力学矫正时间),相对论力学,与相对论关系不大,但以爱因斯坦为代表,在相对论力学中,速度、时间是相对的。

量子力学,则是研究粒子运动的力学,其中比较经典的就是泡利不相容原理,代表人物是普朗克等。

经典力学是相对论力学的基础,量子力学经常要借助相对论力学

⑶ 量子力学和经典力学的区别

最重要的区别在于:经典物理是几乎独立地处理粒子的运动以及粒子群或场的波动,但量子力学却必须统一处理粒子和波动。经典物理认为粒子与波动是两个层次的东西,根本不是一回事儿;而量子力学却认为两者是密不可分的一个整体,此即着名的“波粒二象性”,由此引发了一系列量子力学所特有的奇异结果:如测不准原理、观测量的不连续性(此即量子)、统计诠释(即单粒子的行为在本质上也是不能完全确定的,这不同于经典统计力学)、量子态的非定域性(这与相对论有冲突,但实验又似乎肯定了这种非定域性——有某种意义上的超光速现象存在,至今尚无定论)……

请给好评或采纳哦~谢谢~

⑷ 量子力学与经典力学的主要区别 列出一二三来

1、经典物理是几乎独立地处理粒子的运动以及粒子群或场的波动,但量子力学却必须统一处理粒子和波动。2、经典物理认为粒子与波动是两个层次的东西,根本不是一回事儿;而量子力学却认为两者是密不可分的一个整体,此即着名的“波粒二象性”,由此引发了一系列量子力学所特有的奇异结果:如测不准原理、观测量的不连续性(此即量子)、统计诠释(即单粒子的行为在本质上也是不能完全确定的,这不同于经典统计力学)、量子态的非定域性(这与相对论有冲突,但实验又似乎肯定了这种非定域性——有某种意义上的超光速现象存在,至今尚无定论)……

⑸ 什么是经典力学什么是量子力学有何区别与联系

经典力学是对宏观物体和低速物体进行的力学研究,量子力学是对微观物体和高速物体的力学研究,宏观和微观的界限在原子层面,高速和低速的界限在近光速层面,最主要的区别是经典力学里物体的能量是连续的,量子力学中物体的能量是不连续的,呈跳跃型,这个些连续的能量就称为量子。联系在于两者互为极限情况。

⑹ 经典力学和量子力学都是什么两者有什么不同

经典力学:包括了从牛顿力学到爱因斯坦广义相对论,一套较为完善的体系;量子力学:探索物质的世界在微观粒子方面的、相关的运动规律,区别:经典力学的适用范围是,在宏观低速下的惯性系内,量子力学:进一步的研究计算微在方面观高速运动的粒子。 量子力学作为物理学发展的一个重要分支,也具有着不可替代的作用及影响力。

⑺ 经典力学和量子力学有何区别,本质上的

本质上来说,以牛顿力学为主的力学具有特点:任何物体的运动状态都可以被精确地求得。举个最简单的例子,知道了一个物体的质量、初始位置、速度和全程受力,小球的运动位置、运动速度就可以被唯一地解出来。没有不确定性的存在。
而量子力学的特点是:物体的位置和动量不能被同时准确地表达出来。所谓的“不确定性原理”就是解释了这个问题。位置的不确定性与动量的不确定性的乘积,必然会大于或等于一个定值。由于这个定值较小,在宏观情况下,这种不确定性不会被发现,因而经典力学可以近似看作成立。而在微观情况下,不确定性的影响就很明显了。这时候,就只能采用量子的观点了(如用概率波来描述,可参考薛定谔方程等)。

⑻ 量子力学和经典力学的区别与联系

你好,【量子力学】是反映微观粒子结构及其运动规律的科学。它的出现,使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定的局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,它们之间有密切联系,又有质的区别。量子力学与经典力学在概念和原理上都存在着许多不同之点,本文试图通过比较、对照,找出它们之间的差异,进一步深人了解量子力学的特殊规律,更好地理解和掌握量子力学的概念和原理。 (一)量子力学研究的对象是微观粒子,
【经典力学】研究的对象是宏观粒子。 经典力学把自然界中的宏观物体作为自己的研究对象,即使是为处理问题的方便而把一些物体看作一个质点,仍然县有大小、质量,描述它的运动状态的参量是坐标、速度、质量和能量等等。量子力学研究的对象是微观粒子(分子、原子、原子核和其它基本粒子)。它的主要任务是研究微观粒子的运动规律。但是,不能误认为量子力学与宏观世界毫无关系。事实上,量子力学的规律不仅支配着微观世界,也支配着宏观世界,在这种意义上,所有的物理学都是量子物理学,经典理沦乃是它的一种近似。

⑼ 海森堡发现量子力学量与经典力学量有什么不同之处呢

人们在实验中能观察到的只是光谱线的频率和强度。于是,海森堡从玻尔对应原理出发,“设法建立起一个理论的量子力学,它与经典力学相类似,而在这种量子力学中,只有可观察量之间的关系出现。”他在玻尔的频率条件和克拉姆斯的色散理论中看到了可以这样做的迹象。根据玻尔的频率条件,可以用电子的特征振幅来表示原子中各电子间的相互作用。运用克拉姆斯的量子色散理论,从经典运动方程出发,可以得出一个仅仅以可观测量为基础的量子力学运动方程。这个方程的解在理论上应当能给出原子系统完全确定的频率和能量值,并且也能给出完全确定的量子论的跃迁几率。经过几天紧张的计算,他用得出的方程处理了一个较简单的非谐振子的量子力学系统和绕核作圆周运动的电子的情况,都获得了成功。当他最后算完的时候,已是凌晨三点多钟了。此时他十分兴奋,睡意全无,奔出室外,攀上一座海边的岩塔,一直等到旭日东升。他后来回忆当时的心情时说:“最初,我深为惊奇,我感到,通过原于现象的表面,我正在窥测着一个奇妙的内部世界,而对自然界如此慷慨地层现在我面前的丰富的数学结构,使我感到眼花缭乱。”海森堡在赫尔兰岛上住了一个多星期,终于写成了《关于运动学和动力学的量子论重新解释》一文。他发现量子力学量与经典力学量的不同之处在于:量子力学不遵守一般乘法的交换律,它们是不可对易的,即AB≠BA。从他所得出的方程出发,可以自然地得出符合量子条件的解,而不必像玻尔那样附加几条假说。他知道,“这个十分明显但又错综复杂的物理学问题,只能通过对数学方法的更透彻的研究来解决”。而他的理论在数学处理上只是处于开始阶段,仅能应用于一些简单的例子。所以,他对自己的论文并没十分的把握,犹豫着不敢立即送去发表。经过反复思考,海森堡于7月9日把写完的那篇论文寄给他最严格的评论家泡利,并说:“我冒昧地直接把我的论文手稿寄给您,因为我相信,至少在批判的即否定的方面,它包含了一些真正的物理学。同时我很抱歉,因为我必须要求您在二至三天内把稿寄还我。我必须要么在我留在这里的最后几天内完成它,要么把它付之一炬。”泡利热情支持海森堡理论,并表示,“我向海森堡的勇敢假定致敬”。正是由于泡利的鼓励和支持,这才使海森堡下定决心,将论文送给他的老师玻恩审阅。玻恩看到海森堡的论文后,很快就深刻地认识到他的学生这一工作的重大意义。这时由于海森堡又到哥本哈根去了,他就一方面将海森堡具有划时代意义的论文推荐到《物理学记事》杂志发表,另一方面又与学生约尔丹合作,试图在数学上进一步把海森堡的思想发展成一门系统的量子力学理论。玻恩经过一个星期的苦苦思索,突然想到,如果将玻尔每个定态的能级横写一次,再竖写一次,就会得出一个矩阵。其中,对角位置对应于状态,非对角位置则对应于跃迁。于是,海森堡的那些可观察量就可以用这些列阵来表示,而这些列阵不就是矩阵吗!这种矩阵的运算方法正好与海森堡所得出的运算法则一致。真是“踏破铁鞋无觅处,得来全不费功夫”,数学家早就为物理学准备好了数学工具,只看哪一位物理学家能捷足先登了。由长期在数学之都哥廷根工作,对数学深感兴趣的玻恩来摘取胜利之果,倒也合情合理,并非偶然。玻恩为这个发现而激动,他立即和约尔丹投入紧张的计算,只用了几天时间,就写出了一篇论文《关于量子力学》。在这篇论文中,他们阐明了矩阵运算法则,应用对应原理,从经典的哈密顿正则方程出发,把矩阵形式应用到海森堡的理论中,得到了一个相当于海森堡量子条件的矩阵方程。根据这个方程,可以进一步导出能量守恒定律和玻尔的频率定则,并成功地应用到了谐振子和非谐振子的量子力学系统。

⑽ 经典力学与量子力学的区别

1、研究不同:

经典力学是研究宏观物体做低速机械运动的现象和规律的学科。宏观是相对于原子等微观粒子而言的;低速是相对于光速而言的。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。

量子力学(Quantum Mechanics)是研究物质世界微观粒子运动规律的物理学分支,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论它与相对论一起构成现代物理学的理论基础。

2、创立时间不同:

19世纪末,人们发现旧有的经典理论无法解释微观系统,于是经由物理学家的努力,在20世纪初创立量子力学,解释了这些现象。

而早在19世纪,经典力学就已经成为物理学中十分成熟的分支学科,它包含了丰富的内容。例如:质点力学、刚体力学、分析力学、弹性力学、塑性力学、流体力学等。

3、应用范围不同:

经典力学:在许多场合非常准确。经典力学可用于描述人体尺寸物体的运动(如陀螺和棒球),许多天体(如行星和星系)的运动,以及一些微尺度物体(如有机分子)。

在低速运动的物体中,经典力学非常实用,虽然爱因斯坦提出了相对论,但是在生活中,我们几乎不会遇见高速运动(光速级别),因此,我们还是会以经典力学解释各种现象。但是在高速运动或极大质量物体之间,经典力学就 “心有余而力不足”了。这也正是现代物理学的范畴。

量子力学:在许多现代技术装备中,量子物理学的效应起了重要的作用。从激光、电子显微镜、原子钟到核磁共振的医学图像显示装置,都关键地依靠了量子力学的原理和效应。

对半导体的研究导致了二极管和三极管的发明,最后为现代的电子工业铺平了道路。在核武器的发明过程中,量子力学的概念也起了一个关键的作用。