当前位置:首页 » 经典古典 » 经典力学是什么
扩展阅读
p3怎么带歌词同步 2024-09-20 08:41:09
如何教育小孩子这三点 2024-09-20 08:40:58
初一英语学哪些知识点 2024-09-20 08:23:38

经典力学是什么

发布时间: 2022-02-28 13:27:26

⑴ 经典力学指的是什么

熟知经典力学刚体定点运动理论的朋友都清楚,根据赖柴尔定理(M=u),可直接推导出在进动角速度远小于自转角速度时(Ω
在上面的实验中,采用同型号电机,同一电源供电,两电机分别带双盘陀螺A、B,自转速度相差无几ωA(4200转/分),ωB(4220转/分)
两双盘陀螺,A双盘相距10cm,B双盘相距1cm,基本保证极轴惯量相等JA=JB
两陀螺重心距悬挂点水平距离基本相等,基本保证重力矩相等MA=MB
根据经典理论,两陀螺进动速度应相等
但是实验表明,20秒时间,A进动约三周,B进动三周半,进动速度比约为6/7,多次试验都是这个结果,这基本符合我的分析,即:Ω=M/2Iω,(I……陀螺对支点的转动惯量),并且否定了经典理论的Ω=M/Jω
朋友们有什么疑问请随时发问,本人随时恭候,谢谢
(补充一点:我实验中的陀螺进动角速度与自转角速度的比值Ω/ω≈1/500,不知能否算得“远大于”)

⑵ 什么叫经典力学,简单点!

经典力学,又称古典力学或牛顿力学,是力学的一种,以三条牛顿运动定律作为基础,在宏观世界和低速状态下研究物体运动的有效方法。经典力学是作用于物体上的力学的一个物理模型。经典力学分为静力学(描述静止物体), 运动学 (描述物体运动),和动力学(描述物体受力作用下的运动)。虽然是英国科学家牛顿最早用数学描述把这些定律固定下来,但实际早在几百年前,另一位伟大的科学家伽利略就从实验中发现了这些定律。经典力学的这三条定律是现代物理学的基础,分别如下:

# 第一定律:如果物体处于静止状态或作匀速直线运动,只要没有外力作用,物体将保持静止状态或匀速直线运动状态。这也叫惯性定律;
# 第二定律:物体的加速度与所受的合外力成正比,与物体的质量成反比。加速度的方向与合力的方向相同。即a=\frac{F}{m};
# 第三定律:两个物体的相互作用力总是大小相等,方向相反,同时出现或消失且作用于同一直线上。

经典力学的特点,是打破了绝对空间的概念,即在不同空间发生的事件是相对不同的,如运动车厢内静止的物体,相对在车厢外的人来说是运动的。但仍然认为时间是绝对不变的。

由伽利略和牛顿等人发展起来的力学表述方式着重分析位移,速度,加速度,力等矢量间的关系,又称为矢量力学,(有时牛顿力学这个词汇也用来单指矢量力学)。它是工程和生活中最常用的,但并不是唯一的表述方式。拉格朗日(Lagrange)、哈密顿(Hamilton)、雅可比等发展了经典力学的新的表述形式,成为所谓分析力学(Analytic mechanics)。分析力学所建立的框架成为现代物理的基础,如量子场论、广义相对论、量子引力等。微分几何的发展为它注入了新的生命力,成为现代经典力学的主要研究手段。

经典力学在日常经验范围内给出了精确的结果。现在,在接近光速的高速度或强大重力场的系统中,它被相对论力学取代;在小距离尺度系统中则被量子力学取代;在同时具有上述两种特性的系统中被相对论量子场论取代。但是,经典力学仍然非常有用。因为:
# 它比上述理论简单且易于应用。
# 它在很多场合近似正确。经典力学可用于描述人体尺寸物体的运动(例如陀螺(top)和棒球),很多天体(如行星和星系)的运动,以及一些微尺度物体(如有机分子)。

虽然经典力学和其他“经典”理论(如经典电磁学和热力学)大致相容,在十九世纪末,还是有些只有现代物理才能解释的不一致性被发现。特别的,经电非相对论电动力学预言光速相对于以太是常数,这一预测和经典力学无法调和,并导致了狭义相对论的发展。当和经典热力学结合起来时,经典力学导出吉布斯佯谬(熵无定义)和紫外灾难(黑体发射无穷能量)。为解决这些问题的努力导致了量子力学的发展。

⑶ 经典力学是什么

经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。如第一个假定,实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。第二个假定只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。

⑷ 什么是经典力学什么是量子力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基要学术。在物理学里,经典力学是最早被接受为力学的一个基本纲领。经典力学又分为静力学(描述静止物体)、
运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。
量子力学是研究微观粒子的运动规律的物理学分支学科。它提供粒子“似-粒”、“似-波”双重性(即“波粒二象性”)及能量与物质相互作用的数学描述。它和经典力学的主要区别在于:它研究原子和次原子等“量子领域”。量子力学的进一步研究课题为:宏观物质在十分低或十分高能量或温度才出现的现象。

⑸ 什么是经典力学经典力学什么时候,那个科学家提出的

经典力学是以牛顿运动定律为基础,以下分别列出三条牛顿运动定律:

第一定律:倘物体处于静止状态,或呈等速直线运动,只要没外力作用,物体将保持静止状态,或呈等速直线运动之状态。这定律又称为惯性定律。
第二定律:物体的加速度,与所受的净外力成正比。加速度的方向与净外力的方向相同。即;其中,是加速度,是净外力,是质量。
第三定律:两个物体的相互作用力总是大小相等,方向相反,同时出现或消失。强版第三定律还额外要求两支作用力的方向都处于同一直线。

经典力学推翻了绝对空间的概念:即在不同空间发生的事件是绝然不同的。例如,静挂在移动的火车车厢内的时钟,对于站在车厢外的观察者来说是呈移动状态的。但是,经典力学仍然确认时间是绝对不变的。

由伽利略和牛顿等人发展出来的力学,着重于分析位移、速度、加速度、力等等矢量间的关系,又称为矢量力学。它是工程和日常生活中最常用的表述方式,但并不是唯一的表述方式:约瑟夫·拉格朗日、威廉·哈密顿、卡尔·雅可比等发展了经典力学的新的表述形式,即所谓分析力学。分析力学所建立的框架是近代物理的基础,如量子场论、广义相对论、量子引力等。

微分几何的发展为经典力学注入了蒸蒸日盛的生命力,是研究现代经典力学的主要数学工具。在日常经验范围中,采用经典力学可以计算出精确的结果。但是,在接近光速的高速度或强大引力场的系统中,经典力学已被相对论力学取代;在小距离尺度系统中又被量子力学取代;在同时具有上述两种特性的系统中则被相对论性量子场论取代。虽然如此,经典力学仍旧是非常有用的。因为下述原因:

它比上述理论简单且易于应用。
它在许多场合非常准确。经典力学可用于描述人体尺寸物体的运动(例如陀螺和棒球),许多天体(如行星和星系)的运动,以及一些微尺度物体(如有机分子)。

虽然经典力学和其他“经典”理论(如经典电磁学和热力学)大致相容,在十九世纪末,还是发现出有些只有现代物理才能解释的不一致性。特别是,经典非相对论电动力学预言光波传播于以太内的速度是常数,经典力学无法解释这预测,因而导致了狭义相对论的发展。经典力学和经典热力学的结合又导出吉布斯佯谬(熵不具有良好定义)和紫外灾变(在频率趋向于无穷大时,黑体辐射的理论结果和实验数据无法吻合)。为解决这些问题的努力造成了量子力学的发展。

⑹ 什么是经典力学

经典力学
经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。如第一个假定,实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。第二个假定只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。
力学是物理学中发展较早的一个分支。古希腊着名的哲学家亚里士多德曾对“力和运动”提出过许多观点,他的着作一度被当作古代世界学术的网络全书,在西方有着极大的影响,以致他的很多错误观点在长达2000年的岁月中被大多数人所接受。
16世纪以后,人们开始通过科学实验,对力学现象进行准确的研究。许多物理学家、天文学家如哥白尼、布鲁诺、伽利略、开普勒等,做了很多艰巨的工作,力学逐渐摆脱传统观念的束缚,有了很大的进展。
英国科学家牛顿在前人研究和实践的基础上,经过长期的实验观测、数学计算和深入思考,提出了力学三大定律和万有引力定律,把天体力学和地球上物体的力学统一起来,建立了系统的经典力学理论。其主要内容是:
牛顿第一定律:一切物体没有受外力作用时,总保持匀速直线状态或静止状态,直到有外力迫使它改变这种状态为止。
牛顿第二定律:物体的加速度与所受外力成正比,与物体的质量成反比,加速度的方向与外力的方向相同。公式:F(合)=ma
牛顿第三定律:两个物体之间的作用力与反作用力大小相等,方向相反,并且在同一条直线上。
万有引力定律:自然界中任何两个物体都相互吸引,引力的大小与物体(质点)的质量乘积成正比,与它们之间距离的平方正反比。
现代力学推翻了绝对空间的概念:即在不同空间发生的事件是绝然不同的。例如,静挂在移动的火车车厢内的时钟,对于站在车厢外的观察者来说是呈移动状态的。但是,经典力学仍然确认时间是绝对不变的。
由伽利略和牛顿等人发展出来的力学,着重于分析位移、速度、加速度、力等等矢量间的关系,又称为矢量力学。它是工程和日常生活中最常用的表述方式,但并不是唯一的表述方式:拉格朗日、哈密顿、卡尔·雅可比等发展了经典力学的新的表述形式,即所谓分析力学。分析力学所建立的框架是现代物理的基础,如量子场论、广义相对论、量子引力等。
微分几何的发展为经典力学注入了蒸蒸日盛的生命力,是研究现代经典力学的主要数学工具。在日常经验范围中,采用经典力学可以计算出精确的结果。但是,在接近光速的高速度或强大引力场的系统中,经典力学已被相对论力学取代;在小距离尺度系统中又被量子力学取代;在同时具有上述两种特性的系统中则被相对论性量子场论取代。虽然如此,经典力学仍旧是非常有用的。因为:
它比上述理论简单且易于应用。
它在许多场合非常准确。经典力学可用于描述人体尺寸物体的运动(例如陀螺和棒球),许多天体(如行星和星系)的运动,以及一些微尺度物体(如有机分子)。
虽然经典力学和其他“经典”理论(如经典电磁学和热力学)大致相容,在十九世纪末,还是发现出有些只有现代物理才能解释的不一致性。特别是,经典非相对论电动力学预言光速在以太内是常数,经典力学无法解释这预测,并导致了狭义相对论的发展。经典力学和经典热力学的结合又导出吉布斯佯谬(熵无定义)和紫外灾难(黑体发射无穷能量)。为解决这些问题的努力造成了量子力学的发展。
[编辑本段]理论的表述
经典力学有许多不同的理论表述方式:
牛顿力学(矢量力学)的表述方式。
拉格朗日力学的表述方式。
哈密顿力学的表述方式。
以下介绍经典力学的几个基本概念。为简单起见,经典力学常使用质点来模拟实际物体。质点的尺寸大小可以被忽略。质点的运动可以用一些参数描述:位移、质量、和作用在其上的力。
实际而言,经典力学可以描述的物体总是具有非零的尺寸。(真正的质点,例如电子, 必须用量子力学才能正确描述)。非零尺寸的物体比虚构的质点有更复杂的行为,这是因为自由度的增加 - 例如,棒球在移动的时候可以旋转。虽然如此,质点的概念也可以用来研究这种物体,因为这种物体可以被认知为由大量质点组成的复合物。如果复合物的尺寸极小于所研究问题的距离尺寸,则可以推断复合物的质心与质点的行为相似。因此,使用质点也适合于研究这类问题。
[编辑本段]历史
古希腊的哲学家,包括亚里士多德在内,可能是最早提出“万有之本,必涵其因”论点,以及用抽象的哲理尝试敲解大自然奥秘的思想家。当然,对于现代读者而言,许多仍旧存留下来的思想是蛮有道理的,但并没有无懈可击的数学理论与对照实验来阐明跟证实。而这些方法乃现代科学,如经典力学,能形成的最基本因素。
开普勒是第一位要求用因果关系来诠释星体运动的科学家。他从第谷·布拉赫对火星的天文观测资料里发现了火星公转的轨道是椭圆形的。这与中世纪思维的切割大约发生在西元1600年。差不多于同时,伽利略用抽象的数学定律来解释质点运动。传说他曾经做过一个着名的实验:从比萨斜塔扔下两个不同质量的球来试验它们是否同时落地。虽然这传说很可能不实,但他确实做过斜面上滚球的数量实验;他的加速运动论显然是由这些结果推导出的,而且成为了经典力学上的基石。
牛顿在他的巨着《自然哲学的数学原理》里发表了三条牛顿运动定律;惯性定律,加速度定律,和作用与反作用定律。他示范了这些定律能支配着普通物体与天体的运动。特别值得一提的是,他研究出开普勒定律在理论方面的详解。牛顿先前已创发的微积分是研究经典力学所必备的数学工具。
牛顿和大多数那个年代的同仁,除了惠更斯着名的例外,都认为经典力学应可以诠释所有大自然显示的现象,包括用其分支,几何光学,来解释光波。甚至于当他发现了牛顿环(一个光波干涉现象),牛顿仍然使用自己的光微粒学说来解释。
十九世纪后期,尖端的理论与实验挖掘出许多扑硕迷离的难题。经典力学与热力学的连结导至出经典统计力学的吉布斯佯谬(熵混合不连续特性)。在原子物理的领域,原子辐射呈现线状光谱,而不是连续光谱。众位大师尽心竭力研究这些难题,引导发展出现代的量子力学。同样的,因为经典电磁学和经典力学在座标变换时的互相矛盾,终就创发出惊世的相对论。
自二十世纪末后,不再能虎山独行的经典力学,已与经典电磁学被牢牢的嵌入相对论和量子力学里面,成为在非相对论性和非量子力学性的极限,研究质点的学问
[编辑本段]有效范围
许多经典力学的分支乃是更精准理论的简化或近似。两个最精准的例子是广义相对论和相对论性统计力学。几何光学乃量子光学的近似,并没有比它更优秀的理论了。
[编辑本段]经典力学的完善:

牛顿力学的辉煌成就,决定着后来物理学家的思想、研究和实践的方向。《原理》采用的是欧几里得几何学的表述方式,处理的是质点力学问题,以后牛顿力学被推广到流体和刚体,并逐渐发展成严密的解析形式。
1736年,欧拉写成了《力学》一书,把牛顿的质点力学推广到刚体的场合,引入了惯量的概念,论述了刚体运动的问题 。
牛顿在他的巨着《自然哲学的数学原理》里发表了三条牛顿运动定律;惯性定律,加速度定律,和作用与反作用定律。他示范了这些定律能支配着普通物体与天体的运动。特别值得一提的是,他研究出开普勒定律在理论方面的详解。牛顿先前已创发的微积分是研究经典力学所必备的数学工具。;1738年,伯努利出版了《流体力学》,解决了流体运动问题;达朗贝尔进而于1743年出版了《力学研究》,把动力学问题化为静力学来处理,提出了所谓达朗贝尔原理;莫培督接着在1744年提出了最小作用原理。
把解析方法进一步贯彻到底的是拉格朗日1788年的《分析力学》和拉普拉斯的《天体力学》(在1799~1825年间完成)。前者虽说是一本力学书,可是没有画一张图,自始至终采用的都是纯粹的解析法,因而十分出名,运用广义坐标的拉格朗日方程就在其中。后者专门用牛顿力学处理天体问题,解决了各种各样的疑难。《分析力学》和《天体力学》可以说是经典力学的顶峰。 在分析力学方面做出杰出贡献的还有其他一批人,他们使经典力学在逻辑上和形式上更加令人满意。就这样,经过牛顿的精心构造和后人的着意雕饰,到了十八世纪初期,经典力学这一宏伟建筑巍然矗立,无论外部造型之雅致,还是内藏珍品之精美,在当时的科学建筑群中都是无与伦比的。经典力学正确地反映了弱引力情况下、低速宏观物体运动的客观规律,使人类对物质运动的认识大大地向前跨进了一步。二十世纪末后,不再能虎山独行的经典力学,已与经典电磁学被牢牢的嵌入相对论和量子力学里面,成为在非相对论性和非量子力学性的极限,研究质点的学问。
[编辑本段]相关补充:
经典力学是研究宏观物体做低速机械运动的现象和规律的学科。宏观是相对于原子等微观粒子而言的;低速是相对于光速而言的。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。
自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,伽利略的望远镜人们对行星绕太阳的运动进行了详细、精密的观察。17世纪开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动现象的初步理论。
牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律,为经典力学奠定了基础。亚当斯根据对天王星的详细天文观察,并根据牛顿的理论,预言了海王星的存在,以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。
经典力学中的基本物理量是质点的空间坐标和动量:一个力学系统在某一时刻的状态,由它的某一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。
在经典力学中,力学系统的总能量和总动量有特别重要的意义。物理学的发展表明,任何一个孤立的物理系统,无论怎样变化,其总能量和总动量数值是不变的。这种守恒性质的适用范围已经远远超出了经典力学的范围,现在还没有发现它们的局限性。
早在19世纪,经典力学就已经成为物理学中十分成熟的分支学科,它包含了丰富的内容。例如:质点力学、刚体力学、分析力学、弹性力学、塑性力学、流体力学等。经典力学的应用范围,涉及到能源、航空、航天、机械、建筑、水利、矿山建设直到安全防护等各个领域。当然,工程技术问题常常是综合性的问题,还需要许多学科进行综合研究,才能完全解决。纸锥扬声器的振动模式
机械运动中,很普遍的一种运动形式就是振动和波动。声学就是研究这种运动的产生、传播、转化和吸收的分支学科。人们通过声波传递信息,有许多物体不易为光波和电磁波透过,却能为声波透过;频率非常低的声波能在大气和海洋中传播到遥远的地方,因此能迅速传递地球上任何地方发生的地震、火山爆发或核爆炸的信息;频率很高的声波和声表面波已经用于固体的研究、微波技术、医疗诊断等领域;非常强的声波已经用于工业加工等。

⑺ 经典力学的内容是什么

经典力学又叫古典力学。它认为,时间、空间和质量都是绝对不变的——都和运动毫无关系。举例来说,质量1千克的物体,不管它是静止还是低速运动或高速运动,始终都绝对是1千克。这个看法叫“绝对时空观”。

⑻ 经典力学三大定律是什么

1、牛顿第一定律:

一切物体在没有受到外力作用或受到的合外力为零时,它们的运动保持不变,包括加速度始终等于零的匀速直线运动状态和静止状态,直到有外力迫使它改变这种状态为止。

2、牛顿第二定律:

物体的加速度与所受外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同。

公式:F(合)=kma【当F(合)、m和a 采用国际单位制N、kg和m/s²时,k=1】

3、牛顿第三定律:

两个物体之间的作用力与反作用力大小相等,方向相反,并且在同一条直线上。

经典力学三大定律应用范围:

它在许多场合非常准确。经典力学可用于描述人体尺寸物体的运动(如陀螺和棒球),许多天体(如行星和星系)的运动,以及一些微尺度物体(如有机分子)。在低速运动的物体中,经典力学非常实用,虽然爱因斯坦提出了相对论,但是在生活中,我们几乎不会遇见高速运动(光速级别),因此,我们还是会以经典力学解释各种现象。但是在高速运动或极大质量物体之间,经典力学就 “心有余而力不足”了。这也正是现代物理学的范畴。

(8)经典力学是什么扩展阅读:

经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:

1、假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;

2、一切可观测的物理量在原则上可以无限精确地加以测定。

20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。如第一个假定,实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。第二个假定只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。

⑼ 什么是经典力学

经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。

⑽ 经典力学都包括什么内容

静力学和动力学。建立在牛顿的3定律上。也可以建立在哈密顿原理上。有不同的描述。