‘壹’ 桥梁基础怎么建
桥梁基础分类及修建方法:
1、明挖基础
也称扩大基础,系由块石或混凝土砌筑而成的大块实体基础,其埋置深度可较其他类型基础浅,故为浅基础。它的构造简单,由于所用材料不能承受较大的拉应力,故基础的厚、宽比要足够大,使之形成所谓刚性基础,受力时不致产生挠曲变形。为了节省材料,这类基础的立面往往砌成台阶形,平面将根据墩台截面形状而采用矩形、圆形、T形或多边形等。 建造这种基础多用明挖基坑的方法施工。在陆地开挖基坑,将视基坑深浅、土质好坏和地下水位高低等因素,来判断是否采用坑壁支持结构──衬板或板桩。在水中开挖则应先筑围堰。
明挖基础适用于浅层土较坚实,且水流冲刷不严重的浅水地区。由于它的构造简单,埋深浅,施工容易,加上可以就地取材,故造价低廉,广泛用于中小桥涵及旱桥。中国赵州桥就是在亚粘土地基上采用了这种桥基。
2、桩基础
由许多根打入或沉入土中的桩和连接桩顶的承台所构成的基础。外力通过承台分配到各桩头,再通过桩身及桩端把力传递到周围土及桩端深层土中,故属于深基础。
桩基础适用于土质深厚处。在所有深基础中,它的结构最轻,施工机械化程度较高,施工进度较快,是一种较经济的基础结构。有些桥梁基础要承受较大的水平力,如桥墩基础要承受来自左右方向的水平荷载,其桩基多采用双向斜桩;而一些梁式桥的桥台主要承受来自一侧的土压力,多采用单向斜桩。如桩径很大,像常用的大直径钻孔桩,具有相当大的刚度,则可不加斜桩而做成垂直桩基。
桥梁基础多置于水中,故要求桩材不仅强度高,而且要耐腐蚀。在桥梁中常用的桩材为木材、钢筋混凝土和钢材。由于木材长度有限,强度和耐腐蚀性较低,故木桩多用于中小桥梁,且桩顶必须埋在低水位以下,才能长期保存。钢筋混凝土桩的强度和耐久性均较木桩为优,多用于较大或重要桥梁,但当遇到含盐量较高的水文地质条件,也有腐蚀问题,应采取防护措施。中国在1908~1912年修建津浦(天津—浦口)铁路洛口黄河桥时,其基础就采用了外接圆直径为50厘米的正五边形钢筋混凝土预制桩,桩长15~17米。自50年代以后,曾广泛采用工厂预制的钢筋混凝土空心的管桩、桩外径多为40和55厘米,如1953~1954年在武汉修建的汉水铁路桥和公路桥,以及60年代修建的南京长江桥引桥的大部分基础均采用这种桩基。此外,钢筋混凝土钻孔灌注桩(也称钻孔桩),近几十年在世界范围内发展很快,如1972年在中国山东北镇建成的黄河公路桥,采用直径1.5米、最大入土深达107米的钢筋混凝土钻孔桩;70年代末在阿根廷建成跨巴拉那河的两座斜张桥,全部采用直径达2.0米,最大入土深达73米的钢筋混凝土钻孔桩。至于钢桩主要是钢管桩及H形钢桩,其强度甚高,在土中穿透能力强,在工业发达国家使用较多,在中国有少数桥梁(如上海黄浦江桥)也使用过。
3、沉井基础
是一种古老而且常见的深基础类型,它的刚性大,稳定性好,与桩基相比,在荷载作用下变位甚微,具有较好的抗震性能,尤其适用于对基础承载力要求较高,对基础变位敏感的桥梁。如大跨度悬索桥、拱桥、连续梁桥等。
4、沉箱基础
在桥梁工程中主要指气压沉箱基础。它主要用于大型桥梁,当水下土层中有障碍物而沉井无法下沉,桩无法穿透时;或地基为不平整的基岩且风化严重,需要人员直接检验或处理时,常采用沉箱基础。但沉箱工程需要复杂的施工设备,人在高气压下工作,既不安全,效率也低,其水下下沉深度也受到一定限制,故现今一般较少采用。
5、管柱基础
是主要用于桥梁的一种深基础,管柱外形类似管桩,其区别在于:管柱一般直径较大,最下端一节制成开口状,在一般情况下,靠专门设备强迫振动或扭动,并辅以管内排土而下沉,如落于基岩,可以通过凿岩使锚固于岩盘;而管桩直径一般较小,桩尖制成闭合端,常用打桩机具打入土中,一般较难通过硬层或障碍,更不能锚固于基岩。大型管柱的外形又类似圆形沉井,但沉井主要是靠自重下沉,其壁较厚,而管柱是靠外力强迫下沉,其壁较薄。
管柱基础适用于较复杂的水文地质条件,尤其在某些特殊条件下,更能显示其广泛适应性。如中国武汉长江桥桥址的水文地质条件为:持力层在水面之下深达40米而洪水期长达8个月,显然对气压沉箱不利;河床覆盖层很浅,不能用管桩基础;基岩表面不平,在同一墩位处高差达5~6米,也不能用沉井基础。在此情况下,以管柱基础最为适宜,它不受水深限制,且下端可锚固于岩盘,无需较厚的覆盖层维持柱体稳定,而基础是由分散的柱体支承于岩面,故岩面不平也易于处理。
‘贰’ 为什么有些桥梁要做桩基础,而有些桥梁需要做墩基础
基础的作用是很明确的,把荷载传给大地,桩基是因为桥墩的地质条件所限,例如硬质岩埋深较深,地质松软,需要靠摩擦来提供反力,如果还用扩大基础,这样会不经济,况且跨海大桥没有法用扩大基础;墩基础适用于地质条件好的,流水浅或者在干涸的河床地带的,主要靠基础传递给地面,扩大基础为了减小应力集中现象。
一、桩基的作用及特点
桩可以使部分竖向荷载及水平荷载传递至地基进行承担,达到减轻负荷的作用。同时它还具有抗弯能力和一定的刚度,因此由于工程类别不同,所以桩基类型也存在着很大差别,在普通工业及民用建筑中,主要分为以下几种桩基类型:人工挖孔桩、预制桩、沉管灌注桩和钻孔灌注桩,如果是在基坑支护的工程当中则使用地下连续墙、钻孔灌注桩和止水搅拌桩,道路桥梁工程一般采用钻孔灌注桩和钻埋压装桩,在路基处理过程当中则是采用预应力管桩和CFG桩等。
二、桩基在工程中所起到的具体作用
桩基在工程中所起到的具体作用的主要体现:
(1)因为桩基础具有较大刚度,所以它会保证上部建筑物发生较小的沉降,同时也可以使其能够均匀的变形,可以更好地满足其使用要求。
(2)经过周围介质与桩基间的相互接触、摩擦,可以使上覆荷载传递给桩体周围的土体或基础,减轻所产生的压力。从而进一步为上部建筑物起到一定的支撑作用,对其稳定性起到了良好的保证。
(3)如果遇到地下水位较高或水下施工时,首先就应该考虑用桩基础对地基进行处理,这样可以使工程具有较好的经济性。
(4)因为桩基具有较大抗拔能力和侧向刚度,所以它能够抵抗倾覆力矩和水平力,同时还能有效减轻地震带来的影响,对建筑物的安全起到了保护作用。
(5)如果遇到了地基液化的情况,首先可以将桩穿过液化土层,使其能够稳定地层,这样就可以减轻或消除液化土对建筑物所造成的伤害,还可以保证建筑物在遇到各种荷载或者地震条件影响下的安全性。
三.桩基设计的分析
1、计算单桩竖向极限承载力。
1)极限承载力的计算属于桩基设计的重要内容,在设计的时候,竖向承载力应满足以下规定:
①如果建筑桩基设计是甲级,就应该利用单桩静载试验来确定极限承载力;
②当桩基设计为乙级,并且具有简单的地质条件,就可以参照类似的工程条件进行桩基设计,同时还应该结合相应的原位试验等加以综合确定;
③如果桩基为丙级时,就可以根据经验参数及原位测试等方式来进行确定。
2)极限端阻力、极限侧阻力、单桩竖向极限承载力标准值应按下列规定确定:
①例如一般的桩基承载力可根据规范来确定;
②然而那些大直径端承型桩,就可以利用深层平板载荷试验确定极限端阻力;如果是嵌岩桩,还可以根据岩基平板载荷试验确定;
③通常情况下,桩的极限侧阻力及阻力可通过预埋测试元件的方式通过静载试验确定。与此同时还可以建立标准值与参数之间的经验曲线,最终根据这些经验参数法确定单桩竖向极限承载力。
2、选择桩长及桩型选择。桩型和桩长是桩基设计中必不可少的重要内容,当进行选择时,首先应该对建筑施工现场的环境条件进行勘察,对成桩的桩基对环境可能造成的影响、成桩的可行性、施工工艺、施工工期以及桩基成本等多角度,和对桩基类型和长度进行优化、调整,使其能够在节约投资的基础上对建筑物安全效果有良好的保证。
3、对桩基竖向承载力的计算。当遇到计算竖向承载力时,如果桩基承担轴心荷载,就要保证基桩或复合基桩的竖向力满足要求,如果承担偏心竖向荷载时,那就应该提高其标准;当考虑地震荷载情况时,那么对其竖向承载力的计算就应做到更加严格、仔细。
4、软弱下卧层验算。下卧层的压缩应该按规范要求进行,如果是桩距没有超过6d的群桩基础,那么在桩端持力下所存在的大承载力就应该低于桩端持力层承载力1/3。当考虑桩端硬持力层压力扩散角影响的情况时,那么就可以用实验来对其进行确认。
5、桩项作用效应计算。如果是普通建筑物或是较小荷载的高层建筑,在进行桩基设计时就应考虑到柱、墙等在基桩的桩顶所产生的作用效应,对竖向力及水平力所产生的影响进行考虑;然而如果是需要承担地震荷载的低承台桩基,就更应该进行严格规范的验算了,如果当建筑物位于抗震有利的地段时就可以不考虑地震带来的影响;若是有可能发生8度及8度以上的建筑物区域或受水平力较大的桩基设计的话,那就要考虑承台与桩基的共同效果以及与土体间的弹性抗力作用,最终达到设计准确、科学的设计目的。
6、位移计算与桩基水平承载力。对于保证桩基的安全性,位移的计算及桩基水平承载力起到重要意义,可分为两种类型:单桩基础、群桩基础。
(1)群桩基础。当遇到力矩较大或水平力的情况时,首先应考虑由承台、桩群、土相互作用产生的群桩效应,然后对基桩水平承载力特征值进行计算,土体类型与承台底部与地基土之间的摩擦系数有较大关系,所以在选取时应该小心谨慎。
(2)单桩基础。它在承担水平力时应满足其特征值的要求,主要有以下规定:
①如果是水平荷载为甲级或乙级的建筑桩基时,那么它的特征值就应通过单桩水平静载试验进行确定:
② 然而对于那些桩身配筋率不小于0.65%的混凝土灌注桩,就可以通过静载试验的结果来获取地面处水平位移为10mm所对应的荷载的75%为单桩水平承载力特征值;
③当遇到配筋率小于0.65%的灌注桩时,可利用单桩水平静载试验的临界荷载的75%作为特征值。
7、承台的计算、
(1)对于桩下桩基承台,首先应分别对桩边连线、柱边、变阶处所形成的贯通承台的受剪承载力和斜截面进行验算。如果承台悬挑边形成多个剪切截面时,那么就应该对每个斜截面的受剪承载力进行验算。
(2)关于条形承台梁的弯矩可按照弹性地基梁进行分析计算;如果遇到桩端持力层较为深厚岩体坚硬且桩柱轴线不重合时,首先可以将桩视为不动的铰支座,其次再按连续梁进行计算。
(3)对于桩基承台,则应该对其进行正截面受弯承载力的计算,配筋和受弯承载力可根据规范规定进行。
四、桩基设计中应当注意的问题
1、对桩基竖向力及其原理的理解。当桩基与土层之间发生位移时,由于地球所产生的引力作用,桩基受的力一定是朝下方的,所以桩基与土层之间产生了相对的位移,最终形成了剪刀。
2、具备丰富的专业知识。设计者有专门系统的训练和学习的经验,并且能够懂得理论结合实际,熟练地运用理论知识,如果对现实实际情况做了充分的调查和研究,就可以使道路桥梁桩基设计中的安全系数提到一个更高的层次。
道路桥梁设计是一项非常重要的工程,桩基是工程设计的重要基础,因此不仅要了解桩基竖向力所产生的桩基负摩阻力,机理和原因,更要懂得如何计算负摩擦力。只有这样才能够保证道路桥梁桩基设计更加科学合理,从而更好的提升道路桥梁的安全性和可靠性。
‘叁’ 古桥水下面的木头是什么木头
一般为普通的松木,作为桥墩的基础受力桩,有一句成语叫流水不腐,河水是流动的,所以松木桩在水底下也是不会腐烂。