❶ 不同类型的杆塔基础各适用于什么条件
基础形式主要有:
1.岩石嵌固基础
该基础型式适用于覆盖层较浅或无覆盖层的强风化岩石地基,其特点是底板不配筋,基坑全部掏挖。上拔稳定,具有较强的抗拔承载能力。
需要时,可将主柱的坡度设置与塔腿主材坡度相同,以减小偏心弯矩,还可省去地脚螺栓。由于该基型充分利用了岩石本身的抗剪强度,混凝土和钢筋的用量都较小,同时减少了基坑土石方量,浇制混凝土不需要模板,施工费用较低。
2.岩石锚杆基础
该基型适用于中等风化以上的整体性好的硬质岩。该基础型式是在岩石中直接钻孔、插入锚杆,然后灌浆,使锚杆与岩石紧密粘结,充分利用了岩石的强度,从而大大降低了基础混凝土和钢材量。但岩石锚杆基础需逐基鉴定岩石的完整性。
3.掏挖基础
该基型分全掏挖和半掏挖两种,适用无地下水的硬塑粘性土地基。在基坑施工可成型的情况下,开挖基坑时不扰动原状土,避免大开挖后再填土。基础承受上拔荷载时,原状土的内摩擦角和凝聚力得以充分发挥作用。这种基础型式也显示了较高的经济效益和环境效益,根据以往工程的统计,由于各线路地质条件的不同等原因,采用全掏挖基础比用阶梯型基础节约钢材和混凝土分别为3~7%和8~20%。掏挖基础有直柱式和斜插式两种型式。斜插式掏挖基础将主柱的坡度设置与塔腿主材坡度相同,减小了基础水平力产生的偏心弯矩,还可省去地脚螺栓
4.阶梯型基础
该基础是传统的基础型式,适用各类地质、各种塔型,其特点是大开挖,采用模板浇制,成型后再回填土,利用土体与混凝土重量抗拔,基础底板刚性抗压,不配钢筋。由于阶梯型基础混凝土量较大,埋置较深,易塌方及有流砂地区难以达到设计深度,因此在此类地区应尽量少用。
5.大板基础
大板基础的主要设计特点是:底板大、埋深浅、底板较薄,靠底板双向配筋承担由铁塔上拔、下压和水平力引起的弯矩和剪力,主柱计算与阶梯基础相同。与阶梯基础相比,埋深浅,易开挖成形,混凝土量能适当降低,但钢筋量增加较多。与灌注桩相比,在软弱地基中应用较为广泛。它施工方便,特别是对于软、流塑粘性土、粉土及粉细砂等基坑不易成型的塔位。设计时,对底板的高厚比应进行一定的控制(悬臂长度:底板厚<3:1)不足时可在主柱下增加台阶,以减少板的悬臂长度和底板厚度,为了减小混凝土量,主柱中心与底板中心设置偏心,抵消水平弯矩,达到减小底板及配筋的效果。大板基础设计时应控制沉降及不均匀沉降,对转角塔及负荷较大的直线塔进行地基沉降变形验算,施工时应尽量少扰动地基土,清除开挖的全部浮土并做好垫层,必要时使用块石灌浆。
6.斜插板式基础
该基础的主要特点是基础主柱坡度与塔腿主材坡度一致,塔腿主材角钢直接插入基础混凝土中,使基础水平力对基础底板的影响降至最低。在正常条件下,基础土体上拔稳定、下压稳定和基础强度计算可忽略水平力的影响。与大板基础相比,由于偏心弯矩大大减小,下压稳定控制的基础底板尺寸可相应减小,从而降低了混凝土量和底板配筋量。由于省去了塔座板和地脚螺栓,其钢材的综合指标降低了25%左右。
斜插板式基础在平原、河网地区使用较多,其最大优点就是节省基础材料,施工较为方便。其缺点是施工精度要求高。对于高压缩性软弱土地区,其基础底面地基处理一定要重视基础垫层和基坑排水,并应严格按照有关规定执行。因为一旦发生扰动基底软土或排水不及时,就可能引起基础的不均匀沉降,再很难进行处理。
7.灌注桩基础
对于地质条件为流塑、地基持力层较深且基础作用力较大的耐张塔或直线塔,使用钻孔灌注桩基础是设计中广泛采用的一种方法。它主要靠桩周与土的摩擦力和桩端承载力承担基础上拔力和下压力,施工方便,安全可靠。缺点是施工费用较高。
8.联合基础
联合基础主要适用于基础根开较小且基坑难以开挖、板式基础上拔土体重叠的软弱土塔位,其设计特点是埋深较浅,四个基础整体浇制,靠基础底板上面的纵、横向加劲混凝土梁承担由基础上拔力、下压力和水平力引起的弯矩,底板与纵、横向加劲肋配筋,整体性好。缺点是基础材料用量较大,施工较为烦琐,设计不易成系列。
9.复合式沉井基础
复合式沉井基础是针对地下水位较高的软土地基,尤其是容易产生“流砂”现象的软土地基的一种新型的基础型式。复合式沉井基础是由上、下两部分组成:上部分是方型台阶基础,下部是环形钢筋砼沉井,沉井顶端露出钢筋埋入台阶基础连成整体。基础的埋深在4m左右,沉井筒直径为2.5m左右,从基础深宽比来看(一般为1.5左右),仍属于浅基础。
❷ 锚杆静压桩技术
以下是中达咨询给大家带来的关于锚杆静压桩技术的相关内容,以供参考。
锚杆静压桩是借助锚杆与建筑物基础底板相固接提供的反力,再通过反力架作为传力系统,利用安装在桩顶的千斤顶把预制桩逐节挤压入土层中,达到设计深度和要求的承载力后,再把桩顶与基础底板用微膨胀早强混凝土进行封装,待混凝土凝固后便可和建筑物形成整体,与原有基础共同承受上部荷载,提高了原有建筑物基础的承载能力,满足建筑物加高或加固的需要。压桩反力由建筑物本身自重提供,同时也要求锚固结点满足一定的抗拔力,才能保证压桩的施工顺利进行。
锚杆静压桩在施工过程中是依靠锚固于基础的锚杆和钢梁形成的反力架提供反力,因此,锚杆锚固于基础的牢固程度往往决定了压桩荷载的设计。若锚杆抗拔力过小,而压桩力又比较大,则锚杆容易发生滑脱,这是施工所不允许的,因此,必须对抗拔锚杆设计与埋设的质量足够重视。
通常静力压桩的施工,是通过使用带有配重的静力压桩机完成的,而后压桩技术是在已有建筑物的基础上实施,大型压桩机械无法实施。使用锚杆静压桩很好地解决了场地受限的问题,但由于没有解决反力架的锚固问题,其使用受到了限制,为此,许多单位展开了对锚杆与基础锚固问题的研究。冶金部建筑研究总院同第一冶金建设公司等单位发明了环氧砂浆锚固地脚螺栓的新技术,奠定了锚杆静压桩的发展基础。施工时,先在基础中钻孔,然后放置锚杆,埋深为10倍锚杆直径,锚杆可采用直杆形式,端部镦粗或加焊钢盘箍。最后用环氧砂浆做粘结剂封填钻孔,在桩顶用混凝土封桩。经实践发现,少数锚杆会因设计压桩力超过锚杆的抗拉强度造成锚杆缩颈外,锚杆并未被拔出,从而可以证明用环氧砂浆粘结的锚杆具有较大的抗拔能力。此外,若能确保锚杆孔内干燥,也可用硫磺胶泥作粘结剂。
目前锚杆静压技术对于压桩深度较大的场地显得不足,为满足增加后压桩深度提高承载力的需要,上海市第二建筑有限公司发明了一种实用新型静压锚杆桩反力装置,它解决了传统的锚杆静压桩压桩深度小,压桩力小的缺陷,具有更合理的结构,反力架便于移位,施工工艺简单、工期短且造价低等优点,特别是当城市建筑物密集,打桩机械活动范围受到限制的施工环境时,更显示出其优越性。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
❸ 地基与基础工程质量标准化(一)
(一)、土钉墙、锚杆
1、土钉墙施工需检验放坡系数、土钉位置、孔径、深度及角度、杆体长度、注浆配比、压力及量、喷射混凝土厚度和强度。土钉抗拔承载力检验数量不少于总数的1%,同一土层不少于3根。上一层作业面完成并达到70%设计强度后,方可进行下一层开挖。
2、锚杆施工前需检验钢绞线、锚具、水泥、设备等。施工中需检验锚杆位置、孔径、长度及角度、杆体长度、注浆配比、压力及量。锚杆抗拔承载力检验数量不少于总数的5%,同一土层不少于3根。
(二)、钢板桩支护
1、支护前需检查钢板桩外观。
2、设置位置需符合设计要求,留有施工作业面。支护平面布置应平直整齐,方便桩的利用和支撑设置。
3、桩长不小于设计值,弯曲度≤2%。桩顶标高±100mm。
(三)地下连续墙
3.1 导墙施工
1、基槽开挖:按测量定位线机械开挖,人工配合清底、夯填、整平。管线影响段挖探沟,人工开挖以保证安全。
2、墙体施工:拆模后加对撑防变形,及时回填沟槽,确保稳定。导墙定位、间距、垂直度、平整度应符合设计和规范要求。
2.1.3.2 泥浆制备
1、确定泥浆池尺寸和容量,确保封闭性、不漏浆、不渗水。设置安全防护和警示标识。
2、按配合比配制泥浆,分类标识、管理。泥浆性能指标应符合规范和设计要求,经采样试验合格后方可使用。
3.3 冲抓成槽施工
1、按设计图纸和方案分幅测量定位,单元槽段长度宜为4~6m。
2、严格控制成槽垂直度,偏差过大需及时调整。严格按照设计要求和技术交底进行施工,避免超挖或欠挖。
3、清槽时保持泥浆面标高符合要求,以维持槽壁稳定。清理槽底后,取样试验比重、粘度、含砂率,沉渣厚度不应大于100mm。
3.4 连续墙钢筋笼吊装
1、钢筋笼吊装宜整体吊装,分段吊装需避免受力较大部位,并制定保证措施。
2、验算主副吊扁担、钢丝绳、吊具吊索、吊点。吊点位布置需经计算确定,确保钢筋笼起吊的稳定性、刚度、强度。
3、吊环筋及吊点加强筋需按要求计算布置。选择主吊机车时,需考虑钢筋笼最大尺寸、质量,以及起吊后能旋转180度不碰撞主吊臂架。
4、检查钢筋笼内是否有散落物,防止吊装时坠落。吊装前进行试吊,符合要求后方可正式吊装。
5、在导墙上预埋钢板与钢筋笼焊接,防止浇筑过程中钢筋骨架上浮或下沉。
3.5 导管法混凝土灌注
1、导管安装位置需与钢筋笼预留导管口位置对齐。进行试拼和水密性试验,保证连接处气密性良好。
2、首灌混凝土应装满料斗,两根或多根导管同时打开料斗口进行浇筑,确保浇筑质量。
3、混凝土浇筑过程中,应经常探测孔内混凝土面高程,及时调整导管埋深,最小埋深≥1.0m。
4、末批混凝土浇筑时应适当放慢速度,复核探测混凝土浇筑面标高,混凝土浇筑面宜高出设计标300~500mm。
3.6 刷壁及接头
墙体接头是控制连续墙质量的重要工序,是保证防水效果的关键。槽段开挖完成后,清除接头表面浮土、泥皮,保证连续墙间紧密结合,避免接头渗漏水。
1、施工准备:安装防绕流铁皮,防止浇筑时混凝土绕流至工字钢背后。
2、刷壁:刷壁器必须紧贴工字钢腹板从下至上刷壁,每使用一次,用清水冲洗干净。
3、地下连续墙接头止水处理措施应符合设计要求。
免责声明:以上内容来源于网络,版权归原作者所有,侵权联系删除!
❹ 地基基础有哪些类型各适用于什么条件
基础形式主要有:
1.岩石嵌固基础
该基础型式适用于覆盖层较浅或无覆盖层的强风化岩石地基,其特点是底板不配筋,基坑全部掏挖。上拔稳定,具有较强的抗拔承载能力。
需要时,可将主柱的坡度设置与塔腿主材坡度相同,以减小偏心弯矩,还可省去地脚螺栓。由于该基型充分利用了岩石本身的抗剪强度,混凝土和钢筋的用量都较小,同时减少了基坑土石方量,浇制混凝土不需要模板,施工费用较低。
2.岩石锚杆基础
该基型适用于中等风化以上的整体性好的硬质岩。该基础型式是在岩石中直接钻孔、插入锚杆,然后灌浆,使锚杆与岩石紧密粘结,充分利用了岩石的强度,从而大大降低了基础混凝土和钢材量。但岩石锚杆基础需逐基鉴定岩石的完整性。
3.掏挖基础
该基型分全掏挖和半掏挖两种,适用无地下水的硬塑粘性土地基。在基坑施工可成型的情况下,开挖基坑时不扰动原状土,避免大开挖后再填土。基础承受上拔荷载时,原状土的内摩擦角和凝聚力得以充分发挥作用。这种基础型式也显示了较高的经济效益和环境效益,根据以往工程的统计,由于各线路地质条件的不同等原因,采用全掏挖基础比用阶梯型基础节约钢材和混凝土分别为3~7%和8~20%。掏挖基础有直柱式和斜插式两种型式。斜插式掏挖基础将主柱的坡度设置与塔腿主材坡度相同,减小了基础水平力产生的偏心弯矩,还可省去地脚螺栓
4.阶梯型基础
该基础是传统的基础型式,适用各类地质、各种塔型,其特点是大开挖,采用模板浇制,成型后再回填土,利用土体与混凝土重量抗拔,基础底板刚性抗压,不配钢筋。由于阶梯型基础混凝土量较大,埋置较深,易塌方及有流砂地区难以达到设计深度,因此在此类地区应尽量少用。
5.大板基础
大板基础的主要设计特点是:底板大、埋深浅、底板较薄,靠底板双向配筋承担由铁塔上拔、下压和水平力引起的弯矩和剪力,主柱计算与阶梯基础相同。与阶梯基础相比,埋深浅,易开挖成形,混凝土量能适当降低,但钢筋量增加较多。与灌注桩相比,在软弱地基中应用较为广泛。它施工方便,特别是对于软、流塑粘性土、粉土及粉细砂等基坑不易成型的塔位。设计时,对底板的高厚比应进行一定的控制(悬臂长度:底板厚<3:1)不足时可在主柱下增加台阶,以减少板的悬臂长度和底板厚度,为了减小混凝土量,主柱中心与底板中心设置偏心,抵消水平弯矩,达到减小底板及配筋的效果。大板基础设计时应控制沉降及不均匀沉降,对转角塔及负荷较大的直线塔进行地基沉降变形验算,施工时应尽量少扰动地基土,清除开挖的全部浮土并做好垫层,必要时使用块石灌浆。
6.斜插板式基础
该基础的主要特点是基础主柱坡度与塔腿主材坡度一致,塔腿主材角钢直接插入基础混凝土中,使基础水平力对基础底板的影响降至最低。在正常条件下,基础土体上拔稳定、下压稳定和基础强度计算可忽略水平力的影响。与大板基础相比,由于偏心弯矩大大减小,下压稳定控制的基础底板尺寸可相应减小,从而降低了混凝土量和底板配筋量。由于省去了塔座板和地脚螺栓,其钢材的综合指标降低了25%左右。
斜插板式基础在平原、河网地区使用较多,其最大优点就是节省基础材料,施工较为方便。其缺点是施工精度要求高。对于高压缩性软弱土地区,其基础底面地基处理一定要重视基础垫层和基坑排水,并应严格按照有关规定执行。因为一旦发生扰动基底软土或排水不及时,就可能引起基础的不均匀沉降,再很难进行处理。
7.灌注桩基础
对于地质条件为流塑、地基持力层较深且基础作用力较大的耐张塔或直线塔,使用钻孔灌注桩基础是设计中广泛采用的一种方法。它主要靠桩周与土的摩擦力和桩端承载力承担基础上拔力和下压力,施工方便,安全可靠。缺点是施工费用较高。
8.联合基础
联合基础主要适用于基础根开较小且基坑难以开挖、板式基础上拔土体重叠的软弱土塔位,其设计特点是埋深较浅,四个基础整体浇制,靠基础底板上面的纵、横向加劲混凝土梁承担由基础上拔力、下压力和水平力引起的弯矩,底板与纵、横向加劲肋配筋,整体性好。缺点是基础材料用量较大,施工较为烦琐,设计不易成系列。
9.复合式沉井基础
复合式沉井基础是针对地下水位较高的软土地基,尤其是容易产生“流砂”现象的软土地基的一种新型的基础型式。复合式沉井基础是由上、下两部分组成:上部分是方型台阶基础,下部是环形钢筋砼沉井,沉井顶端露出钢筋埋入台阶基础连成整体。基础的埋深在4m左右,沉井筒直径为2.5m左右,从基础深宽比来看(一般为1.5左右),仍属于浅基础。