当前位置:首页 » 基础信息 » 如何由系数矩阵求基础解系
扩展阅读
灵剑仙动漫叫什么 2024-11-29 12:32:18
印度式教育有多少 2024-11-29 12:28:24

如何由系数矩阵求基础解系

发布时间: 2024-02-24 19:42:55

1. 这个基础解系怎么求

把系数矩阵化为行最简矩阵。∵行最简矩阵的非0行=1,∴系数矩阵秩 r(A)=1,即独立未知量1个。解空间的基向量2个: R= n-r(A)=3-1=2,即自由未知量2个,或说基础解系的秩R=2。下面方法易看懂。


自由未知量写成 Ⅹⅰ=Xⅰ 形式,本题即 Ⅹ2=Ⅹ2,X3=Ⅹ3。先写代数解再写向量解,不易出错。

2. 怎么求基础解系

第一雀缓旁步,先把系数矩阵A化为行最简形
第二步,写出行最简顷橡形对应的齐次方程,以每一行第一个1对哪察应的分量为未知数求解
如A的行最简形为
1 0 2 1
0 1 1 -3
0 0 0 0
则行最简形对应的齐次方程可简单的写成:
x1 +2x3 +x4=0
x2 +x3 -3x4=0
分别取x3=1,x4=0和x3=0,x4=1代入
可以求得两个解向量,就构成了基础解析

3. 矩阵方程求基础解系

如果题目是齐次线性方程组, 系数矩阵经初等行变换化为如此,
则进一步初等行变换,得
[1 2 3 0]
[0 1 1 0]
[0 0 0 1]
进一步初等行变换,得
[1 0 1 0]
[0 1 1 0]
[0 0 0 1]
即方程组化为
x1 = - x3
x2 = - x3
x4 = 0
取 x3 = -1, 得基础解系 (1, 1, -1, 0)^T
齐次方程组的通解是 x = k(1, 1, -1, 0)^T。

4. 线性代数中基础解系是什么

线性方程组的解集合的极大线性无关组就是这个方程组的基础解系。先求解方程组 解出所有解向量,然后求出其极大线性无关组就好。

一般求基础解系先把系数矩阵进行初等变换成下三角矩阵,然后得出秩,确定自由变量,得到基础解系,基础解系是相对于齐次(等号右边为0)的.

例如:x1+x2+x3+7x4=2,x1+2x2+x3+2x4=3,5x1+8x2+5x3+20x4=13,2x1+5x2+2x3-x4=7,其增广矩阵为

1 1 1 7 2

1 2 1 2 3

5 8 5 20 13

2 5 2 -1 7

通过初等变换为:

1 1 1 7 2

0 1 0 -5 1

0 0 0 0 0

0 0 0 0 0

秩为2,未知数个数为4,自由变量个数为4-2=2

设自由变量为x3、x4,取(x3,x4)=(1,0)和(0,1)代入方程组(取最终变换得到的比较简单)可得:(x1,x2)=(-1,0)和(-12,5)

于是基础解系的基:(-1,0,1,0)T和(-12,5,0,1)T.

(4)如何由系数矩阵求基础解系扩展阅读

线性代数通解和基础解系的区别如下:

1、定义不同,对于一个微分方程而言,其解往往不止一个,而是有一组,可以表示这一组中所有解的统一形式,称为通解。基础解系是线性无关的,简单的理解就是能够用它的线性组合表示出该方程组的任意一组解,是针对有无数多组解的方程而言的。

2、求法不同,基础解系不是唯一的,因个人计算时对自由未知量的取法而异,但不同的基础解系之间必定对应着某种线性关系。对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。