当前位置:首页 » 基础信息 » 如何看懂数字基础知识
扩展阅读
我们的同学英语怎么读 2025-01-22 12:19:14
茶业冷知识大全 2025-01-22 11:51:00

如何看懂数字基础知识

发布时间: 2024-01-19 18:45:11

‘壹’ 有关数学的小常识

1.关于数学的小知识
杨辉三角是一个由数字排列成的三角形数表,一般形式如下:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

… … … … …

杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。杨辉,字谦光,北宋时期杭州人。在他1261年所着的《详解九章算法》一书中山碧,辑录了如上所示的三角形数改卖表,称之为“开方作法本源”图。而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。

同时 这也是多项式(a+b)^n 打开括号后的各个项的二次项系数的规律 即为

0 (a+b)^0 (0 nCr 0)

1 (a+b)^1 (1 nCr 0) (1 nCr 1)

2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2)

3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3)

. 。 。 。 。 。

因此 杨辉三角第x层第y项直接就是 (y nCr x)

我们也不难得到 第x层的所有项的总和 为 2^x (即(a+b)^x中a,b都为1的时候)

[ 上述y^x 指 y的 x次方;(a nCr b) 指 组合数]

其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。

杨辉,字谦光,北宋时期杭州人。在他1261年所着的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。

而这样一个三角在我们的奥数竞赛中也是经常逗歼举用到,最简单的就是叫你找规律。具体的用法我们会在教学内容中讲授。

在国外,这也叫做"帕斯卡三角形".
2.关于数学的小知识
1,零 在很早的时候,以为“1”是“数字字符表”的开始,并且它进一步引出了2,3,4,5等其他数字。

这些数字的作用是,对那些真实存在的物体,如苹果、香蕉、梨等进行计数。直到后来,才学会,当盒子里边已经没有苹果时,如何计数里边的苹果数。

2,数字系统 数字系统是一种处理“多少”的方法。不同的文化在不同的时代采用了各种不同的方法,从基本的“1,2,3,很多”延伸到今天所使用的高度复杂的十进制表示方法。

3,π π是数学中最着名的数。忘记自然界中的所有其他常数也不会忘记它,π总是出现在名单中的第一个位置。

如果数字也有奥斯卡奖,那么π肯定每年都会得奖。 π或者pi,是圆周的周长和它的直径的比值。

它的值,即这两个长度之间的比值,不取决于圆周的大小。无论圆周是大是小,π的值都是恒定不变的。

π产生于圆周,但是在数学中它却无处不在,甚至涉及那些和圆周毫不相关的地方。 4,代数 代数给了一种崭新的解决间题的方式,一种“回旋”的演年方法。

这种“回旋”是“反向思维”的。让我们考虑一下这个问题,当给数字25加上17时,结果将是42。

这是正向思维。这些数,需要做的只是把它们加起来。

但是,假如已经知道了答案42,并提出一个不同的问题,即现在想要知道的是什么数和25相加得42。这里便需要用到反向思维。

想要知道未知数x的值,它满足等式25+x=42,然后,只需将42减去25便可知道答案。 5,函数 莱昂哈德·欧拉是瑞士数学家和物理学家。

欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x),他是把微积分应用于物理学的先驱者之一。
3.【生活中有哪些数学知识,请列举,字要多一点】
在我们生活的周围有很多的数学问题,这些数学问题贯穿于生活的方方面面,现实生活中,数学游戏有很多,比方说小朋友在打扑克时快算二十四、数学填框游戏,就连赵本山的小品中也有很多这样的数学游戏.如“树上七个猴,地上一个猴,一共几个猴.”等等生活中的例子.这些游戏构成了我们生活中五彩缤纷的画卷.我们每天早上一起来,首先是对一天的事情进行一下比较简单的计划,一天中要干哪些事情,需要什么时间完成,这一天的预算支出、收入各多少;有了一个初步的打算以后,开始对一天的工作进行实施;一天的工作进行中伴随着各种各样的计算、预算即数学.一天的工作结束后,接下来的是对这一天进行的小结,小结是通过一个一个的数学运算进行的,运算的结果是一个个比较直观的数字.我们现实生活中,购物、估算、计算时间、确定位置和买卖股票等等都与数学有关.可以说,数学在人们的生活中是无处不在的,数学是日常生活中必不可少的工具.无论人们从事什么职业,都不同程度地会用到数学的知识与技能以及数学的思考方法.特别是随着计算机的普及与发展,这种需要更是与日俱增.无论是我们日常生活中的天气预报、储蓄、市场调查与预测,还是基因图谱的分析、工程设计、信息编码、质量监测等等,都离不开数学的支持.而且,数学是和语言一样的一种工具,具有国际通用性.可以说,自然界中的数学不胜枚举,如蜜蜂营造的蜂房,它的表面就是由奇妙的数学图形——正六边形构成的,这种蜂房消耗最少的材料和时间;城市里的下水道盖都有是圆形的,你知道这是为什么吗?人行道上,常见到这样的图案,它们分别是同样大小的正方形或正六边形的地砖铺成的,这样形状的地砖能铺成平整无孔隙的地面.这里面竟有一个节约的数学道理在里面呢?再比如,100户人家要安装电话,事实上并不需要100条电话线路,只要允许有一些时间占线,就能大大节约安装成本,这正体现了数理统计的作用.因此,生活与数学是分不开的,生活中有数学,数学是生活的缩影.在一年要结束的时候,商人在谈论中说我这一年的收入是多少,与去年相比怎么样;农民也在谈论这一年中收入多少粮食;工人也在谈论在这一年的收入与支出是否相当,有多少存款;军人谈论这一年中训练成绩如何,提高了多少成绩;而学生的学习成绩则是对一位教师一年来辛苦工作的衡量标准;单位也在做这样那样的总结.一年的结束是这样的,下一年的开始同样也要有一个预算;一天、一个月、一个季度、一个阶段人们都在做同样的事情;一个人、一个家庭、一个单位、一个组织、一个国家等等,都在用数学的方法对他们在不同时间、地点、空间、人员、事务等等上做一定的运算后,得出一个直观的数字标示量,作为一个目标、结论、预算、程度等等.总之,生活中的数学可以说是无处不在,数学严重影响着我们的生活,是生活中的重要条件.因此,我们不可忽视生活中的数学,要重视它并最大限度地开发、利用它.。
4.数学小知识
1.、王菊珍的百分数

我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。”

2、托尔斯泰的分数

俄国大文豪托尔斯泰在谈到人的评价时,把人比作一个分数。他说:“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。”

1、数学的本质在于它的自由. 康扥尔(Cantor)

2、在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. 康扥尔(Cantor)

3、没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明. 希尔伯特(Hilbert)

4、数学是无穷的科学. 赫尔曼外尔

5、问题是数学的心脏. P.R.Halmos

6、只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰 亡. Hilbert

7、数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 高斯

3、雷巴柯夫的常数与变数

俄国历史学家雷巴柯夫在利用时间方面是这样说的:“时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。”

二、用符号写格言

4、华罗庚的减号

我国着名数学家华罗庚在谈到学习与探索时指出:“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。”

5、爱迪生的加号

大发明家爱迪生在谈天才时用一个加号来描述,他说:“天才=1%的灵感+99%的血汗。”

6、季米特洛夫的正负号

着名的国际工人运动活动家季米特洛夫在评价一天的工作时说:“要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。”

三、用公式写的格言

7、爱因斯坦的公式

近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。”
5.有关数学的小知识
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

一、重视课内听讲,课后及时进行复习.

新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.

二、多做习题,养成解决问题的好习惯.

如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.

三、调整心态并正确对待考试.

首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
6.数学小知识
1.、王菊珍的百分数 我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。”

2、托尔斯泰的分数 俄国大文豪托尔斯泰在谈到人的评价时,把人比作一个分数。他说:“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。

分母越大,则分数的值就越小。” 1、数学的本质在于它的自由. 康扥尔(Cantor) 2、在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. 康扥尔(Cantor) 3、没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明. 希尔伯特(Hilbert) 4、数学是无穷的科学. 赫尔曼外尔 5、问题是数学的心脏. P.R.Halmos 6、只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰 亡. Hilbert 7、数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 高斯 3、雷巴柯夫的常数与变数 俄国历史学家雷巴柯夫在利用时间方面是这样说的:“时间是个常数,但对勤奋者来说,是个‘变数’。

用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。” 二、用符号写格言 4、华罗庚的减号 我国着名数学家华罗庚在谈到学习与探索时指出:“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。”

5、爱迪生的加号 大发明家爱迪生在谈天才时用一个加号来描述,他说:“天才=1%的灵感+99%的血汗。” 6、季米特洛夫的正负号 着名的国际工人运动活动家季米特洛夫在评价一天的工作时说:“要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。”

三、用公式写的格言 7、爱因斯坦的公式 近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。”
7.求数学趣味小知识
◆“0”

罗马数字没有0;

五世纪时,“0”从东方传到罗马,当时教皇非常保守,认为罗马数字可以用来记任何数目,已足够用,就禁止用“0”,一位罗马学者的手册介绍了0和0的一些用法,教皇发现后,对它施以酷刑。

◆以“规”、“矩”度天下之方圆

山东省嘉祥县一座古建筑石室造像中,有两位古代神化中我们远古祖先的形象,一位是伏羲,一位是女娲。伏羲手中物体就是规,与圆规相似;女娲手中物体叫矩,呈直角拐尺形。

有两个供你选择~

‘贰’ 一年级数学知识点

数学作为一门基础学科,其目的是为了培养学生的 理性思维 ,养成严谨的思考的习惯,对一个人的以后工作起到至关重要的作用,特别是在信息时代,可以说,数学与任何科学领域都是紧密结合起来的。

一年级数学 知识点

第一单元

准备课

1、数一数

数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。

2、比多少

同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。

比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。

比较两种物体的多或少时,可以用一一对应的 方法 。

第二单元

位置

1、认识上、下

体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。

2、认识前、后

体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。

同一物体,相对于不同的参照物,前后位置关系也会发生变化。

从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。

3、认识左、右

以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。

要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。

第三单元

1-5的认识和加减法

一、1--5的认识

1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。

2、1—5各数的数序

从前往后数:1、2、3、4、5.

从后往前数:5、4、3、2、1.

3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。

二、比大小

1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“>”表示,即3>2,读作3大于2。前面的数小于后面的数,用“<”表示,即3<4,读作3小于4。

2、填“>”或“<”时,开口对大数,尖角对小数。

三、第几

1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。

2、区分“几个”和“第几”

“几个”表示物体的多少,而“第几”只表示其中的一个物体。

四、分与合

数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1.

把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。

五、加法

1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。

2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。

六、减法

1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。

2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。

七、0

1、0的意义:0表示一个物体也没有,也表示起点。

2、0的读法:0读作:零

3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。

4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0.

如:0+8=89-0=94-4=0

第四单元

认识图形

1、长方体的特征:长长方方的,有6个平平的面,面有大有小。

如图:

2、正方体的特征:四四方方的,有6个平平的面,面的大小一样。

如图:

3、圆柱的特征:直直的,上下一样粗,上下两个圆面大小一样。放在桌子上能滚动。立在桌子上不能滚动。

如图:

4、球的特征:圆圆的,很光滑,它的表面是曲面。放在桌子上能向任意方向滚动。

5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。用小圆柱可以拼成更大的圆柱。

第五单元

6-10的认识和加减法

一、6—10的认识:

1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。

2、10以内数的顺序:

(1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。

(2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。

3、比较大小:按照数的顺序,后面的数总是比前面的数大。

4、序数含义:用来表示物体的次序,即第几个。

5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。

记忆数的组成时,可由一组数想到调换位置的另一组。

二、6—10的加减法

1、10以内加减法的计算方法:根据数的组成来计算。

2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。

3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。

三、连加连减

1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。

2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。

四、加减混合

加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。

第六单元

11-20各数的认识

1、数数:根据物体的个数,可以用11—20各数来表示。

2、数的顺序:11—20各数的顺序是:11、12、13、14、15、16、17、18、19、20、

3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。

4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。如:1个十和5个一组成15。

5、数位:从右边起第一位是个位,第二位是十位。

6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。20的读法,20读作:二十。

7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2.有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。

8、十加几、十几加几与相应的减法

(1)、10加几和相应的减法的计算方法:10加几得十几,十几减几得十,十几减十得几。

如:10+5=1517-7=1018-10=8

(2)、十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。

(3)、加减法的各部分名称:

在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。

在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。

9、解决问题

求两个数之间有几个数,可以用数数法,也可以用画图法。还可以用计算法(用大数减小数再减1的方法来计算)。

第七单元

认识钟表

1、认识钟面

钟面:钟面上有12个数,有时针和分针。

分针:钟面上又细又长的指针叫分针。

时针:钟面上又粗又短的指针叫时针。

2、钟表的种类:日常生活中的钟表一般分两种,一种:挂钟,钟面上有12个数,分针和时针。另一种:电子表,表面上有两个点“:”,“:”的左边和右边都有数。

3、认识整时:分针指向12,时针指向几就是几时;电子表上,“:”的右边是“00”时表示整时,“:”的左边是几就是几时。

4、整时的写法:整时的写法有两种:写成几时或电子表数字的形式。如:8时或8:00

第八单元

20以内的进位加法

1、9加几计算方法:计算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算,其中“凑十法”比较简便。

利用“凑十法”计算9加几时,把9凑成10需要1,就把较小数拆成1和几,10加几就得十几。

2、8、7、6加几的计算方法:(1)点数;(2)接着数;(3)凑十法。可以“拆大数、凑小数”,也可以“拆小数、凑大数”。

3、5、4、3、2加几的计算方法:(1)“拆大数、凑小数”。(2)“拆小数、凑大数”。

4、解决问题

(1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法。

(2)求总数的实际问题,用加法计算。

一年级 数学 学习方法

小学一年级的学习应以培养兴趣为主,只有在低年级时培养起良好的学习兴趣,养成良好的思维习惯,才能够在以后的学习中取得更快的进步。

这个阶段孩子需要积累的是,简单的运算知识和规律,简单图形的认识和分析能力,找规律,让孩子学会一种尝试的方法,简单的逻辑推理能力。

课堂上既想让他们学到知识又想让他们感到轻松有趣,所以对他们采取不同的教学方式,以 故事 、诗歌、 谜语 为载体来开展教学的,对孩子来说是在娱乐中学?习,并没有您想象中的那么枯燥、乏味。下面具体谈谈一年级孩子学数学的方法建议:

1、接触数学,兴趣第一。

我们接触过不少四五年级希望开始学习华数的学生,令人惊讶的是,这些学生中有相当一部分学生其实在低年级时曾经学过数学的,但因为当时学习听课效果不好便放弃了,到了高年级,迫于小学六年级形势又不得不学。对于这样的学生,学习数学是有一定阴影的,甚至有些学生抱定了自己不适合学数学的念头,有一定抵触心理。

所以既然家长决定低年级开始学习数学,一定要首先注意兴趣上的培养,帮助他们找到数学中引起他们兴趣的事情,比如数字游戏等等。

2、找一位孩子最喜欢的老师。

既然刚刚接触数学,兴趣是第一位的,那找一位孩子喜欢的老师就是学习的重中之重。一位好的老师能够让孩子迅速喜欢上课堂,以自己的人格魅力感染学生。?在课堂上,老师不仅是孩子的师长,也是孩子的朋友,和孩子们一起探讨问题,一起思考,使孩子们养成良好的学习习惯,在喜欢老师的同时喜欢数学。

3、用一套最的教材。

通过长期的数学学习,可以使学生的数学学习能力和素质得到培养,思维能力、智力潜能得到很好的开发,现已被众多学有余力和学有兴趣的学生所青睐。数学?课程可以使您的孩子“开思维之窍,入解题之门”,帮助孩子奠定坚实的基础,攀登数学的颠峰!《小学数学练习机》里就有很多好教程。

4、从最合适的起点开始。

刚刚接触数学,学不懂不是孩子不适合学数学,是起点不合适。举个例子:《小学数学练习机》里有很多非常好的教程,但是里面的《秘笈》中的很多知识超前于学校的课本,如果利用的不好,很容易打击孩子的积极性和自信心,这是目前导致很多孩子不喜欢数学,厌恶数学的最主要的原因之一。

学习重点难点解析:

1、巧算与速算的基本知识:对于一年级的学生来说,计算是学生学习时遇到的第一个问题。如果能够在看似无序的算式中寻找到一定的规律,化繁为简,那么学生一定能够增强学习数学的信心,提高学习数学的兴趣。另外,计算与速算是各种后续问题学习的基础。学好数学,首先就要过计算这关。

2、认识并学会数各种基本图形:正方形、长方体、圆和立方体等是小学学习中最常见的图形。通过系统的指导,使一年级的学生能够计算出各种基本图形的个数;使学生建立起有序思维,为建立思维模式打下基础。

3、学习简单的枚举法:枚举法对于一年级的学生来说的确是有一定的困难。在数学课本中,介绍这一难题时采用数数这种更为直观的方式,将复杂抽象的问题形象化,便于孩子们理解。枚举法训练的重点在于有序的 思维方式 ,学习之初将抽象问题形象化,能够更好地引导学生去主动思考,建立起自己的思维方式。

4、数字的奇与偶、不等与相等等关于数论的基础知识:数论问题是后续学习中的一个重点,而这学期将要学到的:数字的奇与偶、不等与相等等无疑将会是今后学习的基础,在这里我们把数论问题分解为各种类型逐一讲解,使数学学习更加系统。

一年级数学学习技巧

1.学好数学,必须掌握三个基本概念:基本概念、基本规律和基本方法。

2。在完成主题后,我们必须仔细 总结 并相互推论。这样,我们就不会花太多的时间和精力,当我们遇到同样的问题在未来。

3.一定要得到一个全面的对数学概念的理解,并且不能有偏见。

4.学习概念的最终目的是用概念来解决具体问题。因此,我们应该主动运用所学到的数学概念来分析和解决相关的数学问题。

5.我们应该掌握各种解决问题的方法,在实践中有意识地总结,慢慢培养合适的分析习惯。

6、要主动提高综合分析能力,利用文本阅读进行分析和理解。

7.在学习中,要注意有意识地转移知识,培养解决问题的能力。

8.为了贯穿我们所学到的形成一个系统的知识,我们可以使用类比关系方法。

9.每一章的内容都是相互关联的,不同章节之间的比较,以及前后的知识真正整合在一起,有助于我们更深入地理解知识体系和内容。

10.在数学学习中,通过对相似的概念或规律进行比较,找出它们的相同点、不同点和联系,从而加深它们的理解和记忆。明确数学知识之间的相互关系,深入理解数学知识的概念,了解数学知识的衍生过程,使知识有序、系统化。

11。学习数学不仅要关注问题,还要关注典型问题。

12。对于一些数学原理、定理公式,不仅记得其结论,了解这一结论。

13.学习数学,记住并正确描述概念和规律。

14.在学习过程中,要注重理解,解放思想,把抽象化为具体,逐步培养学习数学的兴趣。

15。对概念进行恰当的分类可以简化学习内容,突出重点,明确上下文,便于分析、比较、综合和概念。

16.数学学习是最忌讳的知识歧义,知识点被混淆在一起,为了避免这种情况,学生应该学会写“知识结构摘要”。

17.学会对问题类型进行划分和组合,学会从多角度、多方面分析和解决典型问题,并从中总结出基本问题类型和基本规律方法。

18.根据同一种数学知识之间的关系形成一个有机的整体,从而达到全局记忆的目的。

19.结合各种特殊培训的特点,更多的学生和教师进行交流,学习他人的智慧,节省时间,提高问题的速度和质量,提高反应能力。

20。学习数学应该是循序渐进的,只要我们打好基础,就可以逐步完善。

21。解决数学问题,关键是要建立正确的数学概念,从数学思维的角度来看,使用数学法则来解决。

22.认真听课是奠定数学基础的重要组成部分,也是牢固掌握基础知识的根本途径。

23.在解决这一问题时,可以尝试采用不同的方法,如假设法、特殊值法、整体法等。

24、要深刻认识知识点,认真研读课本,认真倾听,了解现实。

25.认真倾听,一方面可以更好地掌握知识背景,加深理解,另一方面,也可以学习教师分析问题,解决问题的思路。

26.当我听老师的评论时,我想先想一想如何做问题,然后看看老师的解决办法是否一样,也就是想想他们是否和老师一样。阅读并思考老师在黑板上解决问题的过程,想想他们是否能这样写,想想在解决问题的过程中是否有漏洞。

27.我们要注意三点:第一,学会用笔;第二,注意课后练习;第三,分层预习。

28.不要担心一个或多个课程的糟糕成绩。利用你的优势。他们可以帮助你重建信心,这是成功的第一个关键。

29。在课堂上,我们应该注意以下三点:第一,用心观察,紧跟教学思路;第二,善于做笔记;第三,积极回答问题,敢于提问。

30.如果你想真正的理解、认识和评价自己,要有勇气面对自己和展示自己。

一年级数学下册知识点相关 文章 :

★ 人教版一年级下册数学知识点归纳

★ 小学一年级数学下册的期末重点汇总

★ 人教版小学一年级数学下册的期末重点汇总

★ 小学一年级下册数学易错题与复习技巧

★ 一年级数学必考知识点总结

★ 人教版一年级数学下册复习资料

★ 编部一年级下册数学知识点

★ 小学一年级下数学考点

★ 人教版一年级下册数学

★ 一年级数学下册复习计划5篇

‘叁’ 小学四年级上册数学知识点大全,快来看看吧!

1.大数的认识

亿以内的数的认识:

十万:10个一万;

一百万:10个十万;

一千万:10个一百万;

一亿:10个一千万;

2.数级

数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。

3.数级分类

(1)四位分级法

即以四位数为一个数级的分级轿冲方法。我国读数的习惯,就是按这种方法读的。

如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……

这些级分别叫做个级,万级,亿级……

(2)三位分级法

即以三位数为一个数级的分级方法。这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。

4.数位

数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。这就说明计数单位和数位的概念是雹念不同的。

5.数的产生

阿拉伯数字的由来:古源帆困代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。

阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。

6.自然数

用以计量事物的件数或表示事物次序的数。

即用数码0,1,2,3,4,……所表示的数。表示物体个数的数叫自然数,自然数由0开始(包括0),一个接一个,组成一个无穷的集体。

7.计算工具

算盘、计算器、计算机

8.射线

在几何学中,直线上的一点和它一旁的部分所组成的图形称为射线。如下图所示:

射线特点

(1)射线只有一个端点,它从一个端点向另一边无限延长。

(2)射线不可测量。

9.直线

直线是点在空间内沿相同或相反方向运动的轨迹。

10.线段

线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。其中AB表示直线上的任意两点。

11.线段特点

(1)有限长度,可以测量

(2)两个端点

12.线段性质

(1)两点之间线段最短。

(2)连接两点间线段的长度叫做这两点间的距离。

(3)直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。

直线没有距离。射线也没有距离。因为,直线没有端点,射线只有一个端点,可以无限延长。

13.角

(1)角的静态定义

具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

(2)角的动态定义

一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

14.角的符号

角的符号:∠

15.角的种类

角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

(1)锐角:大于0°,小于90°的角叫做锐角。

(2)直角:等于90°的角叫做直角。

(3)钝角:大于90°而小于180°的角叫做钝角。

16.乘法

乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。

17.乘法算式中各数的名称

“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

10(因数)×(乘号)200(因数)=(等于号)2000(积)

18.平行

在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。

19.互相垂直

垂直两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

20.平行四边形

在同一平面内有两组对边分别平行的四边形叫做平行四边形。

21.梯形

梯形是指一组对边平行而另一组对边不平行的四边形。平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。

22.除法

除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。

余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。

(3)如何看懂数字基础知识扩展阅读

11.“数位”与“位数”、“计数单位”均为意义不同的概念。

“数位”是指一个数的每个数字所占的位置。数位顺序表从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。同一个数字,由于所在的数位不同,它所表示的数值也就不同。例如,在用阿拉伯数字表示数时,同一个‘6’,放在十位上表示6个十,放在百位上表示6个百,放在亿位上表示6个亿等等。

“位数”是指一个自然数中含有数位的个数。像458这个数有三个数字组成,每个数字占了一个数位,我们就把它叫做三位数。198023456由9个数字组成,那它就是一个九位数。“数位”与“位数”不能混淆。

计数单位:一(个)、十、百、千、万、十万、百万、千万、亿、十亿、百亿、千亿……,都是计数单位。“个位”上的计数单位是“一(个),“十位”上的计数单位是“十”,“百位”上的计数单位是“百”,“千位”上的计数单位是“千”,“万位”上的计数单位是“万”等等。所以在读数时先读数字再读计数单位。

22.自然数知识扩展

自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。

自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论:自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。一定是整数。用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。表示物体个数的数叫自然数,自然数由0开始(包括0),一个接一个,组成一个无穷的集体。

33.角的其他分类

平角:等于180°的角叫做平角。

优角:大于180°小于360°叫优角。

劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

周角:等于360°的角叫做周角。

负角:按照顺时针方向旋转而成的角叫做负角。

正角:逆时针旋转的角为正角。

0角:等于零度的角。

余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)

44.平行线的性质

(1)两条直线平行,同旁内角互补。

(2)两条直线平行,内错角相等。

(3)两条直线平行,同位角相等。

55.平行线的判定(同一平面内)

(1)同旁内角互补,两直线平行。

(2)内错角相等,两直线平行。

(3)同位角相等,两直线平行。

(4)如果两条直线同时与第三条直线平行,那么这两条直线互相平行。

(5)如果两条直线同时垂直于第三条直线,那么这两条直线互相平行。

66.垂线性质

(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。

(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。