㈠ 学习微积分需要什么基本知识
学习微积分,需要中学数学和几何的基本知识。
微积分包括函数、函数的极限、函数的导数、微分与不定积分、定积分、空间解析几何、二元函数、二元函数的偏导数和全微分、重积分、函数的积分、无穷级数、常微分方程等内容。这些内容,与中学数学和几何中的函数、极限、导数、解析几何等基础知识紧密联系。中学数学和几何的基础知识扎实,学习微积分就容易入门;如果不扎实,学习微积分会很难。
㈡ 微积分入门基础知识有哪些
微积分入门基础知识包括微分学和积分学。微分学的主要内容包括极限理论、导数、微分等。积分学的主要内容包括定积分、不定积分等。从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。
微积分的作用及意义
微积分学的创立,极大地推动了数学的发展,过去很多用初等数学无法解决的问题,运用微积分,这些问题往往迎刃而解,显示出微积分学的非凡威力。
它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。
㈢ 学习微积分的前提是先学习什么
学习微积分的前提是先学习函数和积分。
积分是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
(3)微积分以什么为基础扩展阅读:
微积分学应用
微积分学的发展与应用几乎影响了现代生活的所有领域。它与大部分科学分支关系密切,包括医药、护理、工业工程、商业管理、精算、计算机、统计、人口统计,特别是物理学;经济学亦经常会用到微积分学。
几乎所有现代科学技术,如:机械、土木、建筑、航空及航海等工业工程都以微积分学作为基本数学工具。微积分使得数学可以在变量和常量之间互相转化,让我们可以已知一种方式时推导出来另一种方式。
物理学大量应用微积分;经典力学、热传和电磁学都与微积分有密切联系。已知密度的物体质量,动摩擦力,保守力场的总能量都可用微积分来计算。
生物学用微积分来计算种群动态,输入繁殖和死亡率来模拟种群改变。化学使用微积分来计算反应速率,放射性衰退。麦克斯韦尔的电磁学和爱因斯坦的广义相对论都应用了微分。
微积分可以与其他数学分支交叉混合。例如,混合线性代数来求得值域中一组数列的“最佳”线性近似。它也可以用在概率论中来确定由假设密度方程产生的连续随机变量的概率。在解析几何对方程图像的研究中,微积分可以求得最大值、最小值、斜率、凹度、拐点等。
在医疗领域,微积分可以计算血管最优支角,将血流最大化。通过药物在体内的衰退数据,微积分可以推导出服用量。在核医学中,它可以为治疗肿瘤建立放射输送模型。
在经济学中,微积分可以通过计算边际成本和边际利润来确定最大收益。
微积分也被用于寻找方程的近似值;实践中,它用于解微分方程,计算相关的应用题,如:牛顿法、定点循环、线性近似等。比如:宇宙飞船利用欧拉方法来求得零重力环境下的近似曲线。
㈣ 我想学微积分,需要什么基础
学习微积分,只需要中学的数学基础就可以了。也就是知道各种基本函数关系与性质就可以。