㈠ 学量子力学需要什么样的数学基础
可以从实变函数和泛函分析学起。学习实变函数,有利于你建立现代数学的一些基本观念(如函数类)掌握一些基本方法以及积累一些素材。学过实变函数就可以进入现代数学的基础,泛函分析了。只有学过泛函分析,你才能对(非相对论)量子力学有清楚的认识。这时量子力学才不是形式的而是严格的。实变函数和泛函分析的书最好的当属《REAL AND ABSTRACT ANALYSIS》
为了准备学微分几何,还要学一些拓朴和代数。这只是准备概念,不必费太多时间。代数可以看蓝以中的《高等代数教程》,这书用近式代数的语言将古典的矩阵和线性空间的理论加以重复,对于理解抽象的代数概念很有好处。拓朴可以看《拓朴学基础》。这书上的习题狂多,不过只要第一章会了其它章节很简单。
学过泛函分析和拓朴就可以学真正在发展物理理论中有用的微分几何了。微分几何内容十分庞杂,从最基础的导数的值等于切线斜率,一直到函数空间中的几何学。这些东西要在短时间内学会很不容易,不过也有迹可寻。首选的入门书是陈维桓的《微分几何基础》这书不需要高深的基础,但是却是微分几何的入门。学过之后就可以看陈省身的《微分几何》了。这两本书读过以后再回头读《数学物理中的微分形式》,学习如何应用这些数学。《数学物理中的微分形式》算不上严格的数学书,但是里面对如何使用数学却讲得很好。如果觉得李群和李代数有用,还可以专门看看这方面的书。不过我建议找一本以特殊函数为工具,介绍李群的书。看过以后你就知道Bessel函数等那些在数理方法中学过的东西是何等重要。它们直接是对称性的反映,只不过那时你还小并没有认识这一点。学过这以后你知道量子力学真正关心的是什么了。原来量子力学做来做去是一种关于对称的理论。在这一理论中作为群的表示的基的波函数是次要的,而群本身和代表它的特征值才重要,而这些被物理量正是特征值。
再往下就得听天由命了,也许你走运,发现了融合量子论和广义相对论的方法,也许不走运什么也没发现。这可就是天数了,看再多的书也没用。
㈡ 量子力学可以自学吗
量子力学可以自学。
需要具备的基础知识:
高等数学:高数是学习量子力学必要的理论工具。其中涉及众多的微积分、傅里叶变换、矢量计算等,都需要良好的数学基础。
线性代数:量子力学中的矩阵力学涉及大量的矩阵变换、矩阵计算求本征值等,需要良好的线性代数基础。
波粒二象性:短说就是:任何物质都能看成粒子或者是波,但根据海森堡不确定性,不能同时看成两个,因为位置和速度是不能同时确定祥首冲的。(谨歼看成粒子的话能看出位置却得不到速度,看出波的话能得到速度却看不出位置)同时波具有“隧穿效应”,就是一定波长的波能穿过一定厚度的物体。