1. 高等数学中基础解系是如何求的
通过分别令自由变量为1,解出其它变量,得到一个解向量。
基础解系需要满足三个条件:
1、基础解系中所有量均是方程组的解。
2、基础解系线性无关,即基础解系中任何一个量都不能被其余量表示。
3、方程组的任意解均可由基础解系线性表出,即方程组的所有解都可以用基础解系的量来表示。
值得注意的是基础解系不是唯一的,因个人计算时对自由未知量的取法而异。
(1)求基础解系的自由未知量怎么定扩展阅读:
先求出齐次或非齐次线性方程组的一般解,即先求出用自由未知量表示独立未知量的一般解的形式,然后将此一般解改写成向量线性组合的形式,则以自由未知量为组合系数的解向量均为基础解系的解向量。
由此易知,齐次线性方程组中含几个自由未知量,其基础解系就含几个解向量。先确定自由未知量,可以设AX=b的系数矩阵A的秩为r,并假设A经过初等行变换化。
2. 基础解系怎么求 基础解系如何求
1、基础解系求法:确定自由未知量,对矩阵进行基础行变换,转化为同解方程组,代入数值,求解即可。基础解系是大学的高等数学的学习中很重要的知识点。
2、基础解系的定义:基础解系是指方程组的解集的极大线性无关组,即若干个无关的解构成的能够表示任意解的组合。
3、我们在求基础解系时,先确定自由未知量,我们可以设AX=b的系数矩阵A的秩为r,然后对矩阵A进行初等行变换。
4、完成初等变换后,将得到的矩阵转化为同解方程组形式。并将自由未知量xr+1,xr+2,……,xn分别取值为(n-r)组数[1,0,...,0][0,1,...,0],...,[0,1,0,...,0]。
5、这时,再将其带入到矩阵的同解方程组中,我们就可以求得矩阵A的基础解系了。我们遇到具体的矩阵时,只需要套用公式即可。
6、基础解系需要满足三个条件:基础解系中所有量均是方程组的解;基础解系线性无关,即基础解系中任何一个量都不能被其余量表示;方程组的任意解均可由基础解系线性表出,即方程组的所有解都可以用基础解系的量来表示。
3. 这样的基础解系怎么求 秩为1的解系 这样的自由未知数怎么确定
可以取X2,X3为自由未知量,自由未知量的个数=未知数的个数-矩阵A的秩