当前位置:首页 » 基础信息 » 数学建模有哪些基础知识

数学建模有哪些基础知识

发布时间: 2023-06-12 23:25:05

Ⅰ 数学建模具体要学会什么基本的知识

要学的东西挺多的,一、软件方面,需要学习matlab、lingo以及sas软件,各有各的用处,其中matlab是综合性的,功能很强大;lingo是针对优化问题占优,用于求解线性规划和非线性规划问题;sas是统计分析软件,也是这三个中最难学的。二、算法,数学建模中有十大算法,具体可以网络一下。三、要培养读论文和搜索文献资料的能力;四、也是很重要的,当然提高分析问题(审题)的能力和建模的能力,还要提高写论文的水平!

Ⅱ 数学建模需要哪些知识

问题一:学习数模需要具备哪些知识 参加数学建模竞赛需知道的内容
一、全国大学生数学建模竞赛
二、数学建模的方法及一般步骤
三、重要的数学模型及相应案例分析
1、线性规划模型及经济模型案例分析
2、层次分析模型厅明及管理模型案例分析
3、统计回归模型及案例分析
4、图论模型及案例分析
5、微分方程模扮碰告型及案例分析
四、相关软件
1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。
五、数模十大常用算法
1. 蒙特卡罗算法。2. 数据拟合、参数估计、插值等数据处理算法。3. 线性规划、整数规划、多元规划、二次规划等规划类算法。4. 图论算法。5. 动态规划、回溯搜索、分治算法、分支定吵弯界等计算机算法。6. 最优化理论的三大非经典算法。7. 网格算法和穷举法。8. 一些连续数据离散化方法。9. 数值分析算法。10. 图象处理算法。
六、如何查阅资料
七、如何写作论文
八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。
九、如何才能获奖:比较完整,有几处创新点。
十、如何信息处理:WORD、LaTeX,飞秋、QQ。
其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要

问题二:数学建模主要需要哪些知识 推荐你看谢金星编写的那本数学建模书。一本书啃下来,你已经掌握了各种题型的基本方法。做题的时候,题目先是要细细的看,然后,有时候会发现如果所有条件都用上,可能根本就做不出什么来了。所以,你要学会提炼条件。再一个就是通过网上各种资料的搜集,要从别人的文献中找到有用的建模方法,要想成绩特别好的话,就必须有自己的想法。对于美国建模,和国内还是相差挺大的,难度、要求都不一样。必须至少有一人掌握matlab编程。论文一定要写好,语句通顺无错别字。
参加数学建模竞赛是不是需要学习很多知识?
没有必要很系统的学很多数学知识,这是时间和精力不允许的。很多优秀的论文,其高明之处并不是用了多少数学知识,而是思维比较全面、贴合实际、能解决问题或是有所创新。有时候,在论文中可能碰见一些没有学过的知识,怎么办?现学现用,在优秀论文中用过的数学知识就是最有可能在数学建模竞赛中用到的,你当然有必要去翻一翻。
具体说来,大概有以下这三个方面:
第一方面:数学知识的应用能力
归结起来大体上有以下几类:
1)概率与数理统计
2)统筹与线轴规划
3)微分方程;
还有与计算机知识交叉的知识:计算机模拟。
上述的内容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?一个词“自学”,我曾听到过数模评卷的负责教师范毅说过“能用最简单浅易的数学方法解决了别人用高深理论才能解决的答卷是更优秀的答卷”。
第二方面:计算机的运用能力
一般来说凡参加过数模竞赛的同学都能熟练地应用字处理软件“Word”,掌握电子表格“Excel”的使用;“Mathematica”软件的使用,最好还具备语言能力。这些知识大部分都是学生自己利用课余时间学习的。
第三方面:论文的写作能力
前面已经说过考卷的全文是论文式的,文章的书写有比较严格的格式。要清楚地表达自己的想法并不容易,有时一个问题没说清楚就又说另一个问题了。评卷的教师们有一个共识,一篇文章用10来分钟阅读仍然没有引起兴趣的话,这一遍文章就很有可能被打入冷宫了。
最后,祝你取得好成绩。

问题三:参加数学建模大赛需要大概要掌握哪些方面的知识 本人曾参加过两次数模大赛。并都获得二等奖以上。
首先,需要弄清楚建模的过程。建议找本数模历年的论文看看,理清思路,步骤等。
其次,看点数学的知识。重点是优化、统计。几乎每年都会有题目是关于优化的。
第三、看一下算法相关的。当然与上面的第二条有所重复了。并用MATLAB maple等实现以下。
第四、学习一下编程的知识,比如C++,MATLAB,lingo等。
第五、找到两个跟你互补的人,组成团队,有人侧重编程,有人侧重论文,有人侧重数学等等。
最后,祝你好运。

问题四:1.什么是数学模型?数学建模的一般步骤是什么? 2.数学建模需要具备哪些能力和知识? 答的好悬赏加 100分 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一.
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性.建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.测试分析方法也叫做系统辩识.
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法.
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模.
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等.
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等.
数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等基本的数学知识.同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等.
参加数学建模竞赛需知道的内容
一、全国大学生数学建模竞赛
二、数学建模的方法及一般步骤
三、重要的数学模型及相应案例分析
1、线性规划模型及经济模型案例分析
2、层次分析模型及管理模型案例分析
3、统计回归模型及案例分析
4、图论模型及案例分析
5、微分方程模型及案例分析
四、相关软件
1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。
五、数模十大常用算法
1. 蒙特卡罗算法。2. 数据拟合、参数估计、插值等数据处理算法。3. 线性规划、整数规划、多元规划、二次规划等规划类算法。4. 图论算法。5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。6. 最优化理论的三大非经典算法。7. 网格算法和穷举法。8. 一些连续数据离散化方法。9. 数值分析算法。10. 图象处理算法。
六、如何查阅资料
七、如何写作论文
八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。
九、如何才能获奖:比较完整,有几处创新点。
十、如何信息处理:WORD、LaTeX,飞秋、QQ。
其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要...>>

问题五:数学建模需要掌握哪些知识 本人曾参加过两次数模大赛。并都获得二等奖以上。
首先,需要弄清楚建模的过程。建议找本数模历年的论文看看,理清思路,步骤等。
其次,看点数学的知识。重点是优化、统计。几乎每年都会有题目是关于优化的。
第三、看一下算法相关的。当然与上面的第二条有所重复了。并用MATLAB maple等实现以下。第四、学习一下编程的知识,比如C++,MATLAB,lingo等。
第五、找到两个跟你互补的人,组成团队,有人侧重编程,有人侧重论文,有人侧重数学等等。
最后,祝你好运。

问题六:大学生数学建模需要哪些知识 知乎 入门级别:
建模的去看姜启源的数学建模
编程的去学matlab,很简单
写作的学排版
加深学习:
建模的学习机器算法,外带编程
编程的去学R、CAD等辅助性工具
写作的学markdown排版
最后要看你是那个方面的
数学建模分为建模写作编程
你走哪一条就专攻哪一条

Ⅲ 学习数学建模需要哪些知识

数学分析,高等代数,概率统计。数学建模最主要的问题在知识点上无非是这几块:1、多元变量求最值问题,最终能够将其转化为拉格朗日乘子法;2、高维线性规划,线性回归问题,用线性代数的矩阵乘法来解决;3、有可能需要用到随机过程的相关知识,以及应用大数定理,以及蒙特卡洛算法,用概率统计为工具进行解决。

Ⅳ 为学习数学建模打基础,需要学习哪些数学作为基础

1.基础:高等数学、线性代数、概率论与数理统计x0dx0a2.专业方面:运筹学(主要针对最优化问题),其他数学建模用书(主要看方液扒法,例如层次分析法等)x0dx0a3.软件方面:lingo、matlab、origin等x0dx0a5.美赛还要看翻译(所以专业英语要好好学)、排版比较重要x0dx0a总结:数学建模不是纯粹的数学敬亩知识,有时候数学建模用的数学知识很少,所以要了解建模过程闹稿昌,掌握建模方法(方法非常重要)。平时多看一些特等奖的建模论文,你会有意想不到的收获

Ⅳ 为学习数学建模打基础,需要学习哪些数学作为基础

1.基础:高等数学、线性代数、概率论与数理统计
2.专业方面:运筹学(主要针对最优化问题),其他数学建模用书(主要看方法,例如层次分析法等)
3.软件方面:lingo、matlab、origin等
5.美赛还要看翻译(所以专业英语要好好学)、排版比较重要
总结:数学建模不是纯粹的数学知识,有时候数学建模用的数学知识很少,所以要了解建模过程,掌握建模方法(方法非常重要)。平时多看一些特等奖的建模论文,你会有意想不到的收获

Ⅵ 数学建模需要哪些基础知识 有哪些辅导资料

需要数学知识、计算机知识、最好找个字迹漂亮的队友。
过程
模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立
在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
模型分析
对所得的结果进行数学上的分析。
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用
应用方式因问题的性质和建模的目的而异。
数学建模应当掌握的十类算法
‍‍ 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算 法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要 处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题 属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、 Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉 及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计 中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是 用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实 现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛 题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好 使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只 认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非 常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常 用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调 用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该 要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)
数学建模资料
竞赛参考书
l、中国大学生数学建模竞赛,李大潜主编,高等教育出版社(1998). 2、大学生数学建模竞赛辅导教材,(一)(二)(三),叶其孝主编,湖南教育 出版社(1993,1997,1998). 3、数学建模教育与国际数学建模竞赛 《工科数学》专辑,叶其孝主编, 《工科数学》杂志社,1994).
国内教材、丛书
1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版,2003年第三版;第一版在 1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖"). 2、数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989). 3、数学模型选谈(走向数学从书),华罗庚,王元着,王克译,湖南教育出版社;(1991). 4、数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993). 5、数学模型,濮定国、 田蔚文主编,东南大学出版社(1994). 6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995) 7、数学模型,陈义华编着,重庆大学出版社,(1995) 8、数学模型建模分析,蔡常丰编着,科学出版社,(1995). 9、数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996). 10、数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996). 11、数学建模,沈继红、施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996). 12、数学模型基础,王树禾编着,中国科学技术大学出版社,(1996). 13、数学模型方法,齐欢编着,华中理工大学出版社,(1996). 14、数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学 出版社,(1996). 15、数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版杜(1997). 16. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社. 17、数学模型,谭永基,俞文吡编,复旦大学出版社,(1997). 18、数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998). 19、数学建模优秀案例选编(工科数学基地建设丛书),汪国强主编,华南理工大学出版社,(1998). 20、经济数学模型(第二版)(工科数学基地建设丛书),洪毅、贺德化、昌志华 编着,华南理工大学出版社,(1999). 21、数学模型讲义,雷功炎编,北京大学出版社(1999). 22、数学建模精品案例,朱道元编着,东南大学出版社,(1999), 23、问题解决的数学模型方法,刘来福,曾文艺编着、北京师范大学出版社,(1999). 24、数学建模的理论与实践,吴翔,吴孟达,成礼智编着,国防科技大学出版社, (1999). 25、数学建模案例分析,白其岭主编,海洋出版社,(2000年,北京). 26、数学实验(高等院校选用教材系列),谢云荪、张志让主编,科学出版社,(2000). 27、数学实验,傅鹏、龚肋、刘琼荪,何中市编,科学出版社,(2000). 28、数学建模与数学实验,赵静、但琦编,高等教育出版社,(2000).
国外参考书(中译本)
1、数学模型引论, E.A。Bender着,朱尧辰、徐伟宣译,科学普及出版社(1982). 2、数学模型,[门]近藤次郎着,官荣章等译,机械工业出版社,(1985). 3、微分方程模型,(应用数学模型丛书第1卷),[美]W.F.Lucas主编,朱煜民等 译,国防科技大学出版社,(1988). 4、政治及有关模型,(应用数学模型丛书第2卷),[美W.F.Lucas主编,王国秋 等译,国防科技大学出版社,(1996). 5、离散与系统模型,(应用数学模型丛书第3卷),[美w.F.Lucas主编,成礼智 等译,国防科技大学出版社,(1996). 6、生命科学模型,(应用数学模型丛书第4卷),[美1W.F.Lucas主编,翟晓燕等 译,国防科技大学出版社,(1996). 7、模型数学--连续动力系统和离散动力系统,[英1H.B.Grif6ths和A.01dknow 着,萧礼、张志军编译,科学出版社,(1996). 8、数学建模--来自英国四个行业中的案例研究,(应用数学译丛第4号), 英]D.Burglles等着,叶其孝、吴庆宝译,世界图书出版公司,(1997)
专业性参考书
(这方面书籍很多,仅列几本供参考) : 1、水环境数学模型,[德]W.KinZE1bach着,杨汝均、刘兆昌等编纂,中国建筑工 业出版社,(1987). 2、科技工程中的数学模型,堪安琦编着,铁道出版社(1988) 3、生物医学数学模型,青义学编着,湖南科学技术出版杜(1990). 4、农作物害虫管理数学模型与应用,蒲蛰龙主编,广东科技出版社(1990). 5、系统科学中数学模型,欧阳亮编着, E山东大学出版社,(1995). 6、种群生态学的数学建模与研究,马知恩着,安徽教育出版社,(1996) 7、建模、变换、优化--结构综合方法新进展,隋允康着,大连理工大学出版社, (1986) 8、遗传模型分析方法,朱军着,中国农业出版社(1997). (中山大学数学系王寿松编辑,2001年4月)

Ⅶ 参加数学建模需要学习哪些方面的知识

参加数学建模需要学习以下方面的知识。



首先,需要弄清楚建模的过程。建议找本数模历年的论文看看,理清思路,步骤等。


其次,看点数学的知识。重点是优化、统计。几乎每年都会有题目是关于优化的。


第三、看一下算法相关的。当然与上面的第二条有所重复了。并用MATLAB maple等实现以下。


第四、学习一下编程的知识,比如C++,MATLAB,lingo等。


第五、找到两个跟你互补的人,组成团队,有人侧重编程,有人侧重论文,有人侧重数学等等。


数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。


资料来源:网络—数学建模

Ⅷ 数学建模需要哪些知识

数学建模竞赛的内容:

竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。

题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。

数学建模大赛步骤:

建模是一个非常复杂和创造性的工作。现实世界中的事物是如此的多样化和繁杂,以至于不可能指定如何使用一些规则和规则来构建各种模型。下面是对建模的一般步骤和原则的概括总结:

1、模型准备:首先要了解问题的实际背景,明确课题的要求,收集各种必要的信息。

2、模型假设:为了使用数学方法,通常需要对问题做出合理的假设,突出问题的主要特征,忽略问题的次要方面。

3、模型组成:根据所做的假设和事物之间的关系,构造出各量之间的关系,构成问题。

4、模型求解:利用已知的数学方法来求解前一步得到的数学问题,往往需要进一步的简化或假设。对于数学问题,要尽可能小心地使用简单的数学工具。

Ⅸ 参加数学建模需要哪些必备的数学知识

首先是数学建模方面的知识,大师级的一些优秀书籍必须是要看几本的:
(1)
数学模型
姜启源、谢金星、
叶俊
高等教育出版社
(2)
数学建模案例选集
姜启源、
谢金星
高等教育出版社
(3)
实用运筹学:模型、方法与计算
韩中庚
主编/2007年12月/清华大学出版社
模型的求解方面,需要用到Matlab、lingo等数学软件,
现在Matlab书籍很多,适合数学建模的,下面几本还不错:
(1)
MATLAB
7.0从入门到精通(修订版)
刘保柱,苏彦华,张宏林
编着/2010年05月/人民邮电出版社
(2)
优化建模LINDO/LINGO软件
谢金星,薛毅
编着/2005年07月/清华大学出版社
还有一本新书,觉得对参加数学建模竞赛还是很给力的:
matlab在数学建模中的应用
卓金武,魏永生,秦健,李必文编着
北航出版社出版
这几位作者都是参加过建模竞赛的,书中有经验介绍,有很多实际建模竞赛中开发的Matlab源程序,还有原版的获奖论文,觉得对参加数学建模竞赛的应该还是很有启发的。