1. 萃取的原理是什么
用物质在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使物质从一种溶剂内转移到另外一种溶剂中。经过反复多次萃取,将绝大部分的化合物提取出来。
分配定律是萃取方法理论的主要依据,物质对不同的溶剂有着不同的溶解度。同时,在两种互不相溶的溶剂中,加入某种可溶性的物质时,它能分别溶解于两种溶剂中,
实验证明,在一定温度下,该化合物与此两种溶剂不发生分解、电解、缔合和溶剂化等作用时,此化合物在两液层中之比是一个定值。
(1)萃取的理论基础是什么扩展阅读
利用原溶剂与萃取剂对各组分的溶解度(包括经化学反应后的溶解)的差别使它们不等同地分配在两液相中,然后通过两液相的分离,实现组分间的分离。如碘的水溶液用四氯化碳萃取,几乎所有的碘都移到四氯化碳中,碘得以与大量的水分开。
最基本的操作是单级萃取。它是使料液与萃取剂在混合过程中密切接触,让被萃组分通过相际界面进入萃取剂中,直到组分在两相间的分配基本达到平衡。
2. 萃取分液的本质是什么
现代分离科学理论框架的研究
耿信笃, 张养军
(西北大学 现代分离科学研究所ö 现代分离科学陕西省重点实验室, 陕西 西安 710069)
摘要: 分离科学是研究物质在分子水平上的空间分布和移动规律的一门科学。如果这一看法是正确
的话, 那么, 分离科学理论就应该有一个能将各种分离技术原理及支持这些原理的共同理论, 即分
离科学理论框架。既然分离科学是从分子在空间迁移和分布规律的全过程来设计的, 该理论必然要
涉及到溶质分子在流体中的空间迁移和分布, 就必须了解在体系中组分的宏观性质。即①分离过程
中的热力学; ②溶质的迁移和扩散, 因为目前绝大多数组分的分离是在界面(特别是液2固界面)上
完成的, 这就是③分离过程中发生在界面上的计量置换。然而要从微观上深入了解物质能够被分离
的实质便是④平衡分离的分子学基础及⑤疏水效应。在了解了物质的微观、宏观性质及迁移规律
后, 如何才能使分离进行得更好, 这便是⑥分离过程中的最优化和选择分离方法时必须对各种分离
方法的特点有所了解的, ⑦分离方法的简介和比较。上述七部分内容应当成为现代分离科学的理论
骨架。
关 键 词: 分离科学; 热力学; 溶质计量置换保留理论; 疏水效应; 分离方法; 最优化; 理论骨架
中图分类号:O 651 文献标识码:A 文章编号: 10002274Ò (2002) 0520433205
从几千年前我国的炼丹术、酿酒术发展到近一
个世纪以来, 出现了多种分离技术或分离方法。特别
是近年来, 由于精细化工、生命科学和材料科学等新
兴学科的发展, 加之计算机和现代分离手段的广泛
应用, 促使这些新的分离方法的理论日臻完善, 技术
水平不断提高。遗憾的是, 多年来, 这些分离方法各
自讨论其分离原理, 如色谱中就有分配、吸附、离子
交换、反相和疏水色谱等, 故有关分离理论方面的内
容均分散在一些分离方法和其他学科之中。虽然国
外也出版过几本有关“分离方法”的书, 但其只是以
各个“分离方法”为主体分别进行阐述, 对于“分离方
法”的基础理论及各个“分离方法”之间的联系却涉
及甚少。1973 年, B. L. Karger 等 3 人出版了“A n
In t roct ion to Separat ion Science”一书[ 1 ]
, 虽然讲
述分离科学的理论部分不超过全书 1ö 3 的篇幅, 然
而他们的贡献是首次提出了“分离科学”这个概念。
1991 年, 理论色谱学家 J. C. Giddings 写的“A
U n if ied Separat ion Science”一书, 用化学势场和流
这两个各种分离方法共有的参数为纽带, 将原来似
乎毫无关系的、分散在各种分离方法中的分离原理
统一在一起讨论, 并称其为统一的分离科学[ 2 ]
。随着
高技术产业的出现, 特别是生物工程和生物技术及
材料科学的发展, 迫切要求提供更先进、更优化的分
离方法。一些国家和地区, 如美国的加州早在7 年前
就成立了分离科学协会, 其年会规模逐渐扩大, 现已
发展成一个国际性的年会, 还有《专门分离科学》、
《分离科学》及《分离工程杂志》出版, 表明分离科学
作为一个独立的科学分支正在形成和发展。
既然分离科学是一个独立的科学分支, 就必然
有其支撑的理论, 有一个能支持各种分离方法, 至少
是绝大多数的现代分离技术原理的基本理论。1990
年, 笔者之一出版了《现代分离科学理论导引》一
书[ 3 ]
, 对此问题进行了探索, 又经过 10 年的探索和
实践, 对原书作了大幅度的修改, 并增加了新的内容
和章节。最近, 该书已经被教育部研究生办公室推荐
为研究生教学用书, 并由高等教育出版社出版[ 4 ]
。在
该书前言中首次提出了现代分离科学理论框架的论
点。然而, 分离科学作为科学的一个独立分支, 是一
个不断发展和壮大的学科, 理论也在不断发展丰富,
内容也愈来愈丰富。所以,“现代分离科学理论框
架”到底应该包括那些内容, 仍是一个值得进一步探
讨的学术问题。
无论是什么分离方法和多么新的分离工艺, 都
是
3. 萃取的原理是什么
萃取是利用物质在两种互不相溶或微溶的溶剂中溶解度或分配系数的不同,使物质从一种溶剂内转移到另外一种溶剂中。经过反复多次萃取,将绝大部分的化合物提取出来。溶剂萃取工艺过程一般由萃取、洗涤和反萃取组成。
萃取设备又称萃取器,其作用是实现两液相之间的质量传递。对萃取设备的基本要求是使萃取系统的两液相之间能够充分混合、紧密接触并伴有较高程度的湍动;同时使传质后的萃取相与萃余相能够较完善的分开。萃取设备的种类很多,按两相接触方式,可分为逐级接触式和连续接触式;按形成分散相的动力,可分为无外加能量与有外加能量两类,前者只依靠液体送入设备时的压力和两相密度差在重力作用下使液体分散,后者则依靠外加能量用不同的方式使液体分散;此外,根据两相逆流的动力不同,可分为重力作用和离心力作用两类。
一般将有机相提取水相中溶质的过程称为萃取(extraction),水相去除负载有机相中其他溶质或者包含物的过程称为洗涤(scrubbing),水相解析有机相中溶质的过程称为反萃取(stripping)。分配定律是萃取方法理论的主要依据,物质对不同的溶剂有着不同的溶解度。同时,在两种互不相溶的溶剂中,加入某种可溶性的物质时,它能分别溶解于两种溶剂中。
4. 萃取原理
萃取又称溶剂萃取或液液萃取(以区别于固液萃取,即浸取),亦称抽提(通用于石油炼制工业),是一种用液态的萃取剂处理与之不互溶的双组分或多组分溶液,实现组分分离的传质分离过程,是一种广泛应用的单元操作。 利用相似相溶原理,萃取有两种方式:
液-液萃取,用选定的溶剂分离液体混合物中某种组分,溶剂必须与被萃取的混合物液体不相溶,具有选择性的溶解能力,而且必须有好的热稳定性和化学稳定性,并有小的毒性和腐蚀性。如用苯分离煤焦油中的酚;用有机溶剂分离石油馏分中的烯烃; 用CCl4萃取水中的Br2. 固-液萃取,也叫浸取,用溶剂分离固体混合物中的组分,如用水浸取甜菜中的糖类;用酒精浸取黄豆中的豆油以提高油产量;用水从中药中浸取有效成分以制取流浸膏叫“渗沥”或“浸沥”。
虽然萃取经常被用在化学试验中,但它的操作过程并不造成被萃取物质化学成分的改变(或说化学反应),所以萃取操作是一个物理过程。
萃取是有机化学实验室中用来提纯和纯化化合物的手段之一。通过萃取,能从固体或液体混合物中提取出所需要的化合物。这里介绍常用的液-液萃取。
原理
利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或分配系数[1]的不同,使化合物从一种溶剂内转移到另外一种溶剂中。经过反复多次萃取,将绝大部分的化合物提取出来。 分配定律是萃取方法理论的主要依据,物质对不同的溶剂有着不同的溶解度。同时,在两种互不相溶的溶剂中,加入某种可溶性的物质时,它能分别溶解于两种溶剂中,实验证明,在一定温度下,该化合物与此两种溶剂不发生分解、电解、缔合和溶剂化等作用时,此化合物在两液层中之比是一个定值。不论所加物质的量是多少,都是如此。属于物理变化。用公式表示。
CA/CB=K
CA.CB分别表示一种化合物在两种互不相溶地溶剂中的量浓度。K是一个常数,称为“分配系数”。
有机化合物在有机溶剂中一般比在水中溶解度大。用有机溶剂提取溶解于水的化合物是萃取的典型实例。在萃取时,若在水溶液中加入一定量的电解质(如氯化钠),利用“盐析效应”以降低有机物和萃取溶剂在水溶液中的溶解度,常可提高萃取效果。
要把所需要的化合物从溶液中完全萃取出来,通常萃取一次是不够的,必须重复萃取数次。利用分配定律的关系,可以算出经过萃取后化合物的剩余量。
设:V为原溶液的体积
w0为萃取前化合物的总量
w1为萃取一次后化合物的剩余量
w2为萃取二次后化合物的剩余量
w3为萃取n次后化合物的剩余量
S为萃取溶液的体积
经一次萃取,原溶液中该化合物的浓度为w1/V;而萃取溶剂中该化合物的浓度为(w0-w1)/S;两者之比等于K,即:
w1/V =K w1=w0 KV
(w0-w1)/S KV+S
同理,经二次萃取后,则有
w2/V =K 即
(w1-w2)/S
w2=w1 KV =w0 KV
KV+S KV+S
因此,经n次提取后:
wn=w0 ( KV )
KV+S
当用一定量溶剂时,希望在水中的剩余量越少越好。而上式KV/(KV+S)总是小于1,所以n越大,wn就越小。也就是说把溶剂分成数次作多次萃取比用全部量的溶剂作一次萃取为好。但应该注意,上面的公式适用于几乎和水不相溶地溶剂,例如苯,四氯化碳等。而与水有少量互溶地溶剂乙醚等,上面公式只是近似的。但还是可以定性地指出预期的结果。
应用
萃取与其他分离溶液组分的方法相比,优点在于常温操作,节省能源,不涉及固体、气体,操作方便。萃取在如下几种情况下应用,通常是有利的:①料液各组分的沸点相近,甚至形成共沸物,为精馏所不易奏效的场合,如石油馏分中烷烃与芳烃的分离,煤焦油的脱酚;②低浓度高沸组分的分离,用精馏能耗很大,如稀醋酸的脱水;③多种离子的分离,如矿物浸取液的分离和净制,若加入化学品作分部沉淀,不但分离质量差,又有过滤操作,损耗也大;④不稳定物质(如热敏性物质)的分离,如从发酵液制取青霉素。萃取的应用,目前仍在发展中。元素周期表中绝大多数的元素,都可用萃取法提取和分离。萃取剂的选择和研制,工艺和操作条件的确定,以及流程和设备的设计计算,都是开发萃取操作的课题。
5. 萃取根据什么原理进行的
萃取是有机化学实验室中用来提纯和纯化化合物的手段之一。通过萃取,能从固体或液体混合物中提取出所需要的化合物。这里介绍常用的液-液萃取。
基本原理:利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使化合物从一种溶剂内转移到另外一种溶剂中。经过反复多次萃取,将绝大部分的化合物提取出来。
分配定律是萃取方法理论的主要依据,物质对不同的溶剂有着不同的溶解度。同时,在两种互不相溶的溶剂中,加入某种可溶性的物质时,它能分别溶解于两种溶剂中,实验证明,在一定温度下,该化合物与此两种溶剂不发生分解、电解、缔合和溶剂化等作用时,此化合物在两液层中之比是一个定值。不论所加物质的量是多少,都是如此。用公式表示。
CA/CB=KCA.CB分别表示一种化合物在两种互不相溶地溶剂中的摩尔浓度。K是一个常数,称为“分配系数”。
有机化合物在有机溶剂中一般比在水中溶解度大。用有机溶剂提取溶解于水的化合物是萃取的典型实例。在萃取时,若在水溶液中加入一定量的电解质(如氯化钠),利用“盐析效应”以降低有机物和萃取溶剂在水溶液中的溶解度,常可提高萃取效果。
要把所需要的化合物从溶液中完全萃取出来,通常萃取一次是不够的,必须重复萃取数次。利用分配定律的关系,可以算出经过萃取后化合物的剩余量。
6. 什么是理论基础
基础理论概念上是指能用于研究社会经济运动规律、运用的一些基础学科。其实也就是指导你要研究的这门学问的理论基础。
传统的基础理论包括如政治经济学、分配经济学、消费经济学、生产力经济学、发展经济学和经济史学等。我个人认为自然科学、社会学等,也应该纳入基础理论范畴。
7. 萃取什么意思
萃取,又称溶剂萃取或液液萃取,亦称抽提,是利用系统中组分在溶剂中有不同的溶解度来分离混合物的单元操作。
即,是利用物质在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使溶质物质从一种溶剂内转移到另外一种溶剂中的方法。广泛应用于化学、冶金、食品等工业,通用于石油炼制工业。另外将萃取后两种互不相溶的液体分开的操作,叫做分液。
固-液萃取,也叫浸取,用溶剂分离固体混合物中的组分,如用水浸取甜菜中的糖类;用酒精浸取黄豆中的豆油以提高油产量;用水从中药中浸取有效成分以制取流浸膏叫“渗沥”或“浸沥”。
萃取法展望
萃取作为分离和提纯物质的重要单元过程,今后还会得到进一步的发展,其主要发展方向是:
(1)研究新的萃取体系和新的萃取工艺;
(2)合成和筛选高效萃取剂;
(3)研究与发展新型萃取设备,重点应放在设备的自动化、连续化上;
(4)开展萃取机理及理论的研究。
以上内容参考 网络-萃取法;网络-萃取
8. 什么是“理论基础”
基础理论指一门学科的基本概念、范畴、判断与推理。科学的基础理论,指科学的基本概念、范畴与原理。经济学基础理论是由概念、范畴与范畴体系组成的学科逻辑体系,包括科学的经济学理论与不科学的经济学理论。
科学的经济学理论即经济学科学真理,内容是反映经济发展客观规律的经济学科学规律,形式是语言(包括数学)。不科学的经济学理论往往是复杂经济现象中某些方面的抽象,是片面的,包含着合理的因素。
(8)萃取的理论基础是什么扩展阅读:
在这门科学理论体系中起基础性作用并具有稳定性、根本性、普遍性特点的理论原理。这个基础理论,主要有三大基本原理:关于人的思想产生、形成和变化的基本原理;关于人们思想与行为活动变化的基本原理;关于思想政治教育与管理的基本原理。前两者属于基础性原理,后者则属于应用性原理。
多元价值的冲突与平衡是司法鉴定的价值论基础;社会分工的精细是司法鉴定的社会学基础;科学技术的发展是司法鉴定的自然科学基础。司法鉴定既有保障案件真实发现的工具价值,又承载着实现公正和效率的程序价值。
9. 萃取的基本原理是什么
萃取是一种常用分离方法,其原理是利用系统中组分在溶剂中溶解度不同或在吸附剂上的吸附性不同来分离混合物的单元操作。
10. 什么是萃取,有没有定义
萃取装置图萃取又称溶剂萃取或液液萃取(以区别于固液萃取,即浸取),亦称抽提(通用于石油炼制工业),是一种用液态的萃取剂处理与之不互溶的双组分或多组分溶液,实现组分分离的传质分离过程,是一种广泛应用的单元操作。 利用相似相溶原理,萃取有两种方式:
液-液萃取,用选定的溶剂分离液体混合物中某种组分,溶剂必须与被萃取的混合物液体不相溶,具有选择性的溶解能力,而且必须有好的热稳定性和化学稳定性,并有小的毒性和腐蚀性。如用苯分离煤焦油中的酚;用有机溶剂分离石油馏分中的烯烃; 用CCl4萃取水中的Br2.
固-液萃取,也叫浸取,用溶剂分离固体混合物中的组分,如用水浸取甜菜中的糖类;用酒精浸取黄豆中的豆油以提高油产量;用水从中药中浸取有效成分以制取流浸膏叫“渗沥”或“浸沥”。
虽然萃取经常被用在化学试验中,但它的操作过程并不造成被萃取物质化学成分的改变(或说化学反应),所以萃取操作是一个物理过程。
萃取是有机化学实验室中用来提纯和纯化化合物的手段之一。通过萃取,能从固体或液体混合物中提取出所需要的化合物。这里介绍常用的液-液萃取。 [编辑本段]基本原理利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或分配系数[1]的不同,使化合物从一种溶剂内转移到另外一种溶剂中。经过反复多次萃取,将绝大部分的化合物提取出来。
分配定律是萃取方法理论的主要依据,物质对不同的溶剂有着不同的溶解度。同时,在两种互不相溶的溶剂中,加入某种可溶性的物质时,它能分别溶解于两种溶剂中