1. 小學奧數包括哪些內容
概述
一、 計算
1. 四則混合運算繁分數
⑴ 運算順序
⑵ 分數、小數混合運算技巧
一般而言:
① 加減運算中,能化成有限小數的統一以小數形式;
② 乘除運算中,統一以分數形式.
⑶帶分數與假分數的互化
⑷繁分數的化簡
2. 簡便計算
⑴湊整思想
⑵基準數思想
⑶裂項與拆分
⑷提取公因數
⑸商不變性質
⑹改變運算順序
① 運算定律的綜合運用
② 連減的性質
③ 連除的性質
④ 同級運算移項的性質
⑤ 增減括弧的性質
⑥ 變式提取公因數
形如:
3. 估算
求某式的整數部分:擴縮法
4. 比較大小
① 通分
a. 通分母
b. 通分子
② 跟「中介」比
③ 利用倒數性質
若 ,則c>b>a..形如: ,則 .
5. 定義新運算
6. 特殊數列求和
運用相關公式:
①1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n
二、 數論
1. 奇偶性問題
奇 奇=偶 奇×奇=奇
奇 偶=奇 奇×偶=偶
偶 偶=偶 偶×偶=偶
2. 位值原則
形如: =100a+10b+c
3. 數的整除特徵:
整除數 特 征
2 末尾是0、2、4、6、8
3 各數位上數字的和是3的倍數
5 末尾是0或5
9 各數位上數字的和是9的倍數
11 奇數位上數字的和與偶數位上數字的和,兩者之差是11的倍數
4和25 末兩位數是4(或25)的倍數
8和125 末三位數是8(或125)的倍數
7、11、13 末三位數與前幾位數的差是7(或11或13)的倍數
4. 整除性質
① 如果c|a、c|b,那麼c|(a b).
② 如果bc|a,那麼b|a,c|a.
③ 如果b|a,c|a,且(b,c)=1,那麼bc|a.
④ 如果c|b,b|a,那麼c|a.
⑤ a個連續自然數中必恰有一個數能被a整除.
5. 帶余除法
一般地,如果a是整數,b是整數(b≠0),那麼一定有另外兩個整數q和r,0≤r<b,使得a=b×q+r
當r=0時,我們稱a能被b整除.
當r≠0時,我們稱a不能被b整除,r為a除以b的余數,q為a除以b的不完全商(亦簡稱為商).用帶余數除式又可以表示為a÷b=q……r, 0≤r<b a=b×q+r
6. 唯一分解定理
任何一個大於1的自然數n都可以寫成質數的連乘積,即
n= p1 × p2 ×...×pk
7. 約數個數與約數和定理
設自然數n的質因子分解式如n= p1 × p2 ×...×pk 那麼:
n的約數個數:d(n)=(a1+1)(a2+1).(ak+1)
n的所有約數和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )
8. 同餘定理
① 同餘定義:若兩個整數a,b被自然數m除有相同的余數,那麼稱a,b對於模m同餘,用式子表示為a≡b(mod m)
②若兩個數a,b除以同一個數c得到的余數相同,則a,b的差一定能被c整除.
③兩數的和除以m的余數等於這兩個數分別除以m的余數和.
④兩數的差除以m的余數等於這兩個數分別除以m的余數差.
⑤兩數的積除以m的余數等於這兩個數分別除以m的余數積.
9.完全平方數性質
①平方差: A -B =(A+B)(A-B),其中我們還得注意A+B, A-B同奇偶性.
②約數:約數個數為奇數個的是完全平方數.
約數個數為3的是質數的平方.
③質因數分把數字分解,使他滿足積是平方數.
④平方和.
10.孫子定理(中國剩餘定理)
11.輾轉相除法
12.數論解題的常用方法:
枚舉、歸納、反證、構造、配對、估計
三、 幾何圖形
1. 平面圖形
⑴多邊形的內角和
N邊形的內角和=(N-2)×180°
⑵等積變形(位移、割補)
① 三角形內等底等高的三角形
② 平行線內等底等高的三角形
③ 公共部分的傳遞性
④ 極值原理(變與不變)
⑶三角形面積與底的正比關系
S1∶S2 =a∶b ; S1∶S2=S4∶S3 或者S1×S3=S2×S4
⑷相似三角形性質(份數、比例)
① ; S1∶S2=a2∶A2
②S1∶S3∶S2∶S4= a2∶b2∶ab∶ab ; S=(a+b)2
⑸燕尾定理
S△ABG:S△AGC=S△BGE:S△GEC=BE:EC;
S△BGA:S△BGC=S△AGF:S△GFC=AF:FC;
S△AGC:S△BCG=S△ADG:S△DGB=AD:DB;
⑹差不變原理
知5-2=3,則圓點比方點多3.
⑺隱含條件的等價代換
例如弦圖中長短邊長的關系.
⑻組合圖形的思考方法
① 化整為零
② 先補後去
③ 正反結合
2. 立體圖形
⑴規則立體圖形的表面積和體積公式
⑵不規則立體圖形的表面積
整體觀照法
⑶體積的等積變形
①水中浸放物體:V升水=V物
②測啤酒瓶容積:V=V空氣+V水
⑷三視圖與展開圖
最短線路與展開圖形狀問題
⑸染色問題
幾面染色的塊數與「芯」、棱長、頂點、面數的關系.
四、 典型應用題
1. 植樹問題
①開放型與封閉型
②間隔與株數的關系
2. 方陣問題
外層邊長數-2=內層邊長數
(外層邊長數-1)×4=外周長數
外層邊長數2-中空邊長數2=實面積數
3. 列車過橋問題
①車長+橋長=速度×時間
②車長甲+車長乙=速度和×相遇時間
③車長甲+車長乙=速度差×追及時間
列車與人或騎車人或另一列車上的司機的相遇及追及問題
車長=速度和×相遇時間
車長=速度差×追及時間
4. 年齡問題
差不變原理
5. 雞兔同籠
假設法的解題思想
6. 牛吃草問題
原有草量=(牛吃速度-草長速度)×時間
7. 平均數問題
8. 盈虧問題
分析差量關系
9. 和差問題
10. 和倍問題
11. 差倍問題
12. 逆推問題
還原法,從結果入手
13. 代換問題
列表消元法
等價條件代換
五、 行程問題
1. 相遇問題
路程和=速度和×相遇時間
2. 追及問題
路程差=速度差×追及時間
3. 流水行船
順水速度=船速+水速
逆水速度=船速-水速
船速=(順水速度+逆水速度)÷2
水速=(順水速度-逆水速度)÷2
4. 多次相遇
線型路程: 甲乙共行全程數=相遇次數×2-1
環型路程: 甲乙共行全程數=相遇次數
其中甲共行路程=單在單個全程所行路程×共行全程數
5. 環形跑道
6. 行程問題中正反比例關系的應用
路程一定,速度和時間成反比.
速度一定,路程和時間成正比.
時間一定,路程和速度成正比.
7. 鍾面上的追及問題.
① 時針和分針成直線;
② 時針和分針成直角.
8. 結合分數、工程、和差問題的一些類型.
9. 行程問題時常運用「時光倒流」和「假定看成」的思考方法.
六、 計數問題
1. 加法原理:分類枚舉
2. 乘法原理:排列組合
3. 容斥原理:
① 總數量=A+B+C-(AB+AC+BC)+ABC
② 常用:總數量=A+B-AB
4. 抽屜原理:
至多至少問題
5. 握手問題
在圖形計數中應用廣泛
① 角、線段、三角形,
② 長方形、梯形、平行四邊形
③ 正方形
七、 分數問題
1. 量率對應
2. 以不變數為「1」
3. 利潤問題
4. 濃度問題
倒三角原理
例:
5. 工程問題
① 合作問題
② 水池進出水問題
6. 按比例分配
八、 方程解題
1. 等量關系
① 相關聯量的表示法
例: 甲 + 乙 =100 甲÷乙=3
x 100-x 3x x
②解方程技巧
恆等變形
2. 二元一次方程組的求解
代入法、消元法
3. 不定方程的分析求解
以系數大者為試值角度
4. 不等方程的分析求解
九、 找規律
⑴周期性問題
① 年月日、星期幾問題
② 余數的應用
⑵數列問題
① 等差數列
通項公式 an=a1+(n-1)d
求項數: n=
求和: S=
② 等比數列
求和: S=
③ 裴波那契數列
⑶策略問題
① 搶報30
② 放硬幣
⑷最值問題
① 最短線路
a.一個字元陣組的分線讀法
b.在格子路線上的最短走法數
② 最優化問題
a.統籌方法
b.烙餅問題
十、 算式謎
1. 填充型
2. 替代型
3. 填運算符號
4. 橫式變豎式
5. 結合數論知識點
十一、 數陣問題
1. 相等和值問題
2. 數列分組
⑴知行列數,求某數
⑵知某數,求行列數
3. 幻方
⑴奇階幻方問題:
楊輝法 羅伯法
⑵偶階幻方問題:
雙偶階:對稱交換法
單偶階:同心方陣法
十二、 二進制
1. 二進制計數法
① 二進制位值原則
② 二進制數與十進制數的互相轉化
③ 二進制的運算
2. 其它進制(十六進制)
十三、 一筆畫
1. 一筆畫定理:
⑴一筆畫圖形中只能有0個或兩個奇點;
⑵兩個奇點進必須從一個奇點進,另一個奇點出;
2. 哈密爾頓圈與哈密爾頓鏈
3. 多筆畫定理
筆畫數=
十四、 邏輯推理
1. 等價條件的轉換
2. 列表法
3. 對陣圖
競賽問題,涉及體育比賽常識
十五、 火柴棒問題
1. 移動火柴棒改變圖形個數
2. 移動火柴棒改變算式,使之成立
十六、 智力問題
1. 突破思維定勢
2. 某些特殊情境問題
十七、 解題方法
(結合雜題的處理)
1. 代換法
2. 消元法
3. 倒推法
4. 假設法
5. 反證法
6. 極值法
7. 設數法
8. 整體法
9. 畫圖法
10. 列表法
11. 排除法
12. 染色法
13. 構造法
14. 配對法
15. 列方程
⑴方程
⑵不定方程
⑶不等方程
2. 小學數學奧數知識點總結
以下內容希望對你有所幫助!
首先,奧數教學能夠激發小學生學習數學的興趣。奧數題目往往從結構到解法都充滿著藝術的魅力,易於小學生積極探索解法,而在探索解法的過程中,小學生又親身體驗到數學思想的博大精深和數學方法的創造力,因此會產生進一步對學習數學的嚮往感、入迷感。
其次,奧數教學能夠激發小學生的數學審美感。數學的美在許多的奧數題目中得到了集中的體現。讓我們先來觀察奧數題的—系列解題技巧:構造、對應、逆推、區分、染色、對稱、配對、特殊化、一般化、優化、假設、輔助圖表……令人眼花繚亂。這些解題技巧是一種高智力水平的藝術,能帶給小學生—種獨立於詩歌、音樂、繪畫之外的另一種審美感受。
再次,奧數教學能夠激發小學生的創造力。奧數題的求解更要依賴的是整體全面的洞察力、敏銳的直覺和獨創性的構思,這些正是創造力構成的主要元素,而這些創造力的主要元素也正是系統接受過奧數教學的小學生之所長。
一年級奧數:
一年級的孩子剛剛踏入小學。不論是學習習慣還是學習方法,都需要全面的培養和正確的引導,這就需要家長對整個六年的小學學習有一個全面的規劃。
學習重點難點解析:
1.巧算與速算的基本知識:對於一年級的學生來說,計算是學生學習時遇到的第一個問題。如果能夠在看似無序的算式中尋找到一定的規律,化繁為簡,那麼學生一定能夠增強學習數學的信心,提高學習數學的興趣。另外,計算與速算是各種後續問題學習的基礎。學好數學,首先就要過計算這關。
2.認識並學會數各種基本圖形:正方形、長方體、圓和立方體等是小學學習中最常見的圖形。通過系統的指導,使一年級的學生能夠計算出各種基本圖形的個數;使學生建立起有序思維,為建立思維模式打下基礎。
3.學習簡單的枚舉法:枚舉法對於一年級的學生來說的確是有一定的困難。在華數課本中,介紹這一難題時採用數數這種更為直觀的方式,將復雜抽象的問題形象化,便於孩子們理解。枚舉法訓練的重點在於有序的思維方式,學習之初將抽象問題形象化,能夠更好地引導學生去主動思考,建立起自己的思維方式。
4.數字的奇與偶、不等與相等等關於數論的基礎知識:數論問題是後續學習中的一個重點,而這學期將要學到的:數字的奇與偶、不等與相等等無疑將會是今後學習的基礎,在這里我們把數論問題分解為各種類型逐一講解,使華數學習更加系統。
二年級奧數:
二年級是開發孩子智力、形成良好思維習慣的最佳時期,學習奧數不僅能夠極大地鍛煉孩子的思維能力,也能為孩子之後的學習打下堅實的基礎。對於二年級的學生家長來說,激發孩子對華數的興趣是最主要的。
學習重點難點解析:
1、計算要過關:對於二年級學生的奧數學習來說,最先碰到的問題就是計算問題,計算問題是重點也是難點。根據學校數學的學習情況,孩子還沒有學習乘除法的列豎式,尤其是乘法的列豎式在二年級華數的學習中要求的比較多,比如華數課本下冊第三講速算與巧算中就多次用到了乘法,另外一些應用題中也會有所應用。所以對於學習下冊華數的學生,首先計算關一定要過。
2、枚舉是難點:對於二年級的學生來說,有序思維和抽象思維是比較困難的,對於問題,二年級的學生更多的願意以湊數來嘗試解答問題。而枚舉法的問題需要的就是孩子的有序思維,比如華數課本上冊幾枚硬幣湊錢的方法,下冊的整數拆分都屬於枚舉法的問題。這類問題不僅要求孩子要有序,同時直觀性不強,對於孩子理解有一定困難。建議家長可以比較抽象的問題形象化,比如上面舉到的漢堡和汽水的例子就更加形象。
3、應用題要接觸:二年級華數課本下冊中的後幾講已經接觸到了應用題部分,對於倍數等概念也有學習,建議學有餘力的孩子可以適當接觸三年級中的部分問題,但是難度不要像三年級華數課本中那樣大。
三年級奧數:
三年級的奧數學習是小學奧數最重要的基礎階段,只有牢固掌握了三年級奧數最基本的知識技巧,才能有效的促進今後的數學學習,最終在競賽、以及小升初中有所斬獲。
學習重點難點解析:
三年級屬於奧數學習打基礎階段,孩子進入三年級以後,隨著年齡的增長,孩子的計算能力,認知能力,邏輯分析能力相比於一、二年級有很大的提高,這個時期是奧數思維形成的關鍵時期,是學奧數的黃金時段,所以能否把握住三年級這一黃金時段,關繫到以後小升初的成與敗。下面就簡要介紹一下三年級下學期學習的關鍵知識點。
1.運用運算定律及性質速算與巧算
計算是數學學習的基本知識,也是學好奧數的基礎。能否又快又準的算出答案,是歷年數學競賽考察的一個基本點。在三年級,主要學習了加法與乘法運算定律,其中應用乘法分配率是競賽中考察巧算的一大重點;除此之外,競賽中還時常考察帶符號「搬家」與添括弧/去括弧這兩種通過改變運算順序進而簡便運算的思路。例如:17×5+17×7+13×5+13×7
問題解析:由於四個加項沒有公共的乘數,不能直接應用乘法分配率。可以考慮先分組應用乘法分配率,在觀察的思路,原式=(17×5+17×7)+(13×5+13×7)=17×(5+7)+13×(5+7)=17×12+13×12=(17+13)×12=30×12=360
2.學習假設思想解決雞兔同籠問題
雞兔同籠問題源於我國1500年前左右的偉大數學著作《孫子算經》,其中記載的31題,「今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?」翻譯成現代文就是說有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94隻腳。求籠中各有幾只雞和兔?
問題解析:我們知道每隻雞2隻腳,每隻兔子4隻腳,我們不妨假設籠子裡面只有雞,那麼應該有隻腳,而事實上有94隻腳,原因就是我們把一部分兔子假設成了雞。
我們知道,每隻兔子比雞多2隻腳,那麼一共應該有隻兔子,剩下了35–12=23隻雞。
對於一般的雞兔同籠問題,我們有雞數=(兔的腳數總頭數–總腳數)(兔的腳數-雞的腳數)
兔數=(總腳數-雞的腳數總頭數)(兔的腳數-雞的腳數)
3.平均數應用題
「平均數」這個數學概念在同學們的日常學習和生活中經常用到。例如,三年級上學期期末考完試,可以計算全班同學的數學「平均成績」,同學與爸爸媽媽三個人的「平均年齡」等等,都是我們經常碰到的求平均數的問題。根據我們所舉的例子,可以總結出求平均數的一般公式:總數和÷人數(或個數)=平均數。比如說人大附小三年級(一)班第2小組5名同學上學期期末數學成績分別是93,95,98,97,90,那麼第2小組5名同學的數學平均分是多少呢?
問題解析:根據我們總結的公式,首先可以求出第2小組5名同學數學的總分一共是93+95+98+97+92=475,所以他們的平均分是475÷5=95(分)。
4.和差倍應用題
和差倍問題是由和差問題、和倍問題、差倍問題三類問題組成的。和倍問題是已知大小兩個數的和與它們的倍數關系,求大小兩個數的應用題,一般可應用公式:數量和÷對應的倍數和=「1」倍量;差倍問題就是已知大小兩個數的差和它們的倍數關系,求大小兩個數的應用題,一般可應用公式:數量差÷對應的倍數差=「1」倍量;和差問題是已知大小兩個數的和與兩個數的差,求大小兩個數的應用題一般可應用公式:大數=(數量和+數量差)÷2,小數=(數量和-數量差)÷2。為了幫助我們理解題意,弄清題目中兩種量彼此間的關系,常採用畫線段圖的方法以線段的相對長度來表示兩種量間的關系,以便於找到解題的途徑。
5.年齡問題
基本的年齡問題可以說是和差倍問題生活化的典型應用。同時,年齡問題也有其鮮明的特點:任何兩個人之間的年齡差保持不變。解決年齡問題,關鍵就是要抓住以上兩點。例如:哥哥兩年後的年齡是弟弟年齡的2倍,今年哥哥比弟弟大5歲,那麼今年弟弟多少歲?
問題解析:由於兩人之間的年齡差不變,在2年之後哥哥仍然比弟弟大5歲,那時哥哥是弟弟年齡的2倍,這就變成了一道差倍問題,也就是說弟弟的年齡在2年後是5÷(2-1)=5(歲),所以今年弟弟5-2=3(歲)。
四年級奧數:
四年級是一個承前啟後的階段,學習內容的難度和廣度有所增加,各種競賽任務和招生考試的成績重要性大大增加,不論自己的孩子是剛剛開始學習奧數,還是已經著手為競賽、升學做准備,如何更好的完成四年級的學習計劃,如何做好四年級和五年級的過渡,如何規劃小升初之前的這兩年時間是每個家長都要面對的問題。
學習重點難點解析:
1、計算:計算是貫穿整個小學階段的重點,每個年級奧數的學習都以計算為基礎,較好的計算能力是學好其它章節,取得優異成績的保證。每個年級的計算有每個年級的特點,四年級的計算以加入了小數的計算為主,對於奧數基礎扎實的同學並且希望在五年級取得一些成績的同學還應該加入一些分數的計算。四年級計算應該掌握的重點題型有多位數的計算,小數的基本運算,小數的簡便運算等。其中,多位數的計算主要以通過縮放講多位數湊成各位數全是9的多位數,再利用乘法的分配率進行計算。小數的簡便運算主要與等差數列求和、乘法的分配率和結合率、換元法等結合在一起,需要同學們對各種題型熟練的掌握,尤其是多位數的計算。最後,小數計算的重點還是最基礎的小數的加減乘除混合運算,在初學小數時由於小數點的原因計算經常出錯,如果計算不準確,再好的方法和技巧都無從談起。所以,四年級學習計算的重點在於以基礎計算為主,掌握各種簡便運算技巧,提高准確度和速度。
2、平均數問題:在學習平均數問題的時候一定要先對平均數的概念有很好的理解。我們在授課過程中經常發現絕大多數同學在解平均數問題時經常犯一個錯,尤其是在行程問題中的一道題,錯誤率最高。小明從學校到家速度為12,從家到學校速度為24,問往返的平均速度是多少?很多同學答案都是18,誤以為平均數度就是速度的平均,這是不對的。在學習平均數問題的時候還要會利用基準數處理一大串數據的求和問題和求平均數的問題。很多復雜的平均數問題都是可以利用濃度三角的方法來解決的,尤其是思維導引中後面的一些復雜的平均數問題,同學們應該嘗試用濃度三角的方法來解決平均數問題。平均數問題的學習對以後濃度問題的學習很有好處,因為大部分平均問題的題型和濃度問題的題型從本質上來講是相同的
3、行程問題:四年級行程問題要掌握以下各類的問題:相遇問題、追及問題、火車相遇問題、流水行船問題、多次相遇問題等。首先,我們要對基本的相遇問題和追及問題有非常深刻的了解,在學習過程中經常有同學到六年級了對於追及問題中兩個人所走的時間是否相等還經常容易出錯。其次,我們要熟悉並掌握火車相遇問題和流水行船問題這兩個行程問題中最基本的專題,對我們後面復雜行程問題的學習起到非常大的幫助。最後,要掌握行程問題中解決復雜問題常用的技巧,劃線段的習慣,並養成良好、簡潔的解題習慣。畫線段圖的方法是解決很多復雜行程問題常用的方法,很多同學在畫線段圖的時候不夠簡潔,常常畫出的線段圖中多餘的線段和條件太多,導致畫出的線段圖比題目本身還復雜,無法分析求解。在平時的學習中應該盡量模仿老師,養成良好的解題習慣。
4、排列組合:排列組合是對上學期所學的加法原理和乘法原理兩講的一個升華。在加法原理和乘法原理中大家對分步和分類有了一定程度的理解和掌握,排列組合在此基礎上提供了更專業更有效解決計數問題的方法。在排列組合中首先要對排列組合的概念、排列數與組合數的計算、排列與組合的區別等有很好的理解,尤其是排列和組合的區分上,需要對一些經典例題的掌握從而來理解排列和組合的區別。同時,很多問題好需要結合分類分步方法和排列組合的原理來解題,並不是單純的排解組合公式的應用。對於一些基礎不好的同學,一定要在熟練掌握加法原理和乘法原理之後再來學習排列組合的知識。對於一些排列組合常見的題型和常用的方法要做到信手拈來。
5、幾何計數與周期性問題:幾何計數和周期性問題相對於行程和排列組合來說是兩個較小的專題,但是也是各大競賽和入學考試常見題型,尤其是很多綜合題同時包含數論和周期性問題的相關知識點,是競賽和備考的重中之重。幾何級數的掌握要從線段、角、三角形、長方形開始,學會用簡單的方法來解決復雜計數問題的步驟。而周期性問題常和等差數列、數論結合在一起,同學在做題題時經常容易出錯,需要在這方面的加大做題量。
五年級奧數:
五年級下學期是小升初前的最後一個學期,對於整個小學階段的數學學習起著至關重要的作用,只有這一關過好了,才可能在小升初的備考中游刃有餘。所以這學期的奧數學習應該有更強的針對性,針對自己的實際情況和目標選擇合適的班型。
學習重點難點解析:
五年級屬於小學高年級,孩子進入五年級以後,隨著年齡的增長,孩子的計算能力,認知能力,邏輯分析能力都比以前有很大的提高,這個時期是奧數思維形成的關鍵時期,是學奧數的黃金時段,所以是否把握住五年級這個黃金時段,關繫到以後小升初的成與敗。那麼在整個五年級階段都有哪些重點知識呢?為了孩子更好的把握五年級的學習重點,下面就介紹一下五年級的關鍵知識點。
1.進入數學寶庫的分析方法——遞推方法:任何事物的發展總是從簡單到復雜,奧數也是一樣,對於復雜問題,我們不妨先從最簡單的情況入手,通過處理簡單的問題,我們可以從中得到規律或者訣竅,從而來解決復雜的問題,這就是遞推方法。比如說:平面上2008條直線最多有幾個交點?同學們第一眼看到這個問題時,肯定會想畫2008條直線相交然後再數交點個數,那該是多麻煩啊!其實我們可以先來解決簡單點的情況,分別找到1條、2條、3條、4條……這些直線有多少個交點。
1條直線最多有0個交點0
2條直線最多有1個交點1
3條直線最多有3個交點1+2=3
4條直線最多有6個交點1+2+3=6
5條直線最多有10個交點1+2+3+4=10
6條直線最多有15個交點1+2+3+4+5=15
……
所以2008條直線有1+2+3+4+5+…+2007=2015028個交點。
那麼聰明的你,你能算出2008條直線最多可以把圓分成幾部分么?
2.變化無窮、形跡不定的行程問題:提到行程問題,同學們可能就感到頭疼,的確不錯,因為行程問題中各個物體的速度、時間、路程都在變化,而且各個物體都是在運動中,位置是隨著時間在變化,所以分析起來就很麻煩,為了更好的解決這個問題,我們把行程問題進行了細分:基本行程(單個物體)、平均速度、相遇、追及、流水行船、火車過橋、火車錯車、鍾表問題、環形線路上行程。只要我們掌握這些每個小類型中的訣竅,形成一種分析思路,復雜的行程問題無非是這些類型的變形而已,解決起來就容易多了。
3.抽象而又雜亂的數論問題:數論是從五年級的核心知識,無論是在哪本教材里,都用了很多的章節來講解數論,要想解決復雜的數論問題,我們首先得掌握數論的基本知識:數的奇偶性、約數(現在叫因數)、倍數、公約數及最大公約數、公倍數及最小公倍數、質數、合數、分解質因數、整除、余數及同餘等。這些基本知識點里又有些非常有代表性的例題,只要能掌握好這些知識點,然後做一定量的數論綜合習題,碰到難的數論問題我們就容易解決了。
4.有趣的抽屜原理:生活中有很多有趣的事情,比如說:把4個蘋果放到3個抽屜里,無論你怎麼放,總有某個抽屜里至少有2個蘋果,這就是抽屜原理。
對於抽屜原理我們只要找到蘋果的個數a與抽屜的個數b,我們就可以得到下面的結論:
若a÷b=r……q
當q=0時,我們就說總有某個抽屜里至少有r個蘋果;
當q0時,我們就說總有某個抽屜里至少有(r+1)個蘋果。
比如說把32個蘋果放進8個抽屜里,因為32÷8=4,無論怎麼放,總有某個抽屜里有4個蘋果。如果把35個蘋果放進8個抽屜里,因為35÷8=4……3,無論怎麼放,總有某個抽屜里有4+1=5個蘋果。
但是大部分的奧數題是沒有告訴我們抽屜的個數的,那樣我們就得自己構造抽屜,從而找出抽屜的個數。
5.圖形面積計算:求圖形的面積也是奧數中的一個難點,對於這類題我們首先要掌握好各種基本圖形的面積計算公式,然後記住一些重要的結論:比如說三角形的等積變形、直角三角形中30度所對的邊是斜邊的一半、勾股定理、梯形中蝴蝶翅膀原理、相似三角形中邊與面積的關系。在計算面積時的方法有:直接計演算法、割補法、方程法等。在圖形面積計算中,難題往往得添加輔助線,這個就是難點所在,因為添加輔助線非常靈活,這就要我們多做些這方面的題,多積累一些添加輔助線的技巧,做到心中有數。
六年級奧數:
現在正是小升初特別關鍵的一個時期,無論從信息還是自身的學習方面都要做好充分的准備,我想通過最近巨人組織的活動大家至少能夠看到是有一批非常敬業的老師希望能夠給大家提供盡量多的機會,後面還會陸續有活動,各位家長在信息和機會方面肯定不用擔心。下面我主要說說當機會擺在面前的時候我們應該怎樣去把握住它,首先要明確一點,小升初並不是我們的最終目標,而只是為了孩子今後的學習打下一個良好的基礎。所以我們一定要重視孩子學習習慣的培養,舉個很簡單的例子:很多同學做題的時候審題不認真,經常把會做的題目做錯,即使是最厲害的學生,如果把題目看錯了,那也是不可能把題目做對的。這一點特別特別的重要,無論是小升初還是今後的中考高考,因為現在的衡量標准其實並不是比誰更「聰明」,而是比誰更認真,學習更扎實。從最近的一些學校的考試我們就可以看出一個趨勢,就是題量大,時間段,對於單位時間內的做題效率有很高的要求,這個效率體現在兩個方面,就是速度和正確率。
學習重點難點解析:
1、分數百分數問題,比和比例:
這是六年級的重點內容,在歷年各個學校測試中所佔比例非常高,重點應該掌握好以下內容:
對單位1的正確理解,知道甲比乙多百分之幾和乙比甲少百分之幾的區別;
求單位1的正確方法,用具體的量去除以對應的分率,找到對應關系是重點;
分數比和整數比的轉化,了解正比和反比關系;
通過對「份數」的理解結合比例解決和倍(按比例分配)和差倍問題;
2、行程問題:
應用題里最重要的內容,因為綜合考察了學生比例,方程的運用以及分析復雜問題的能力,所以常常作為壓軸題出現,重點應該掌握以下內容:
路程速度時間三個量之間的比例關系,即當路程一定時,速度與時間成反比;速度一定時,路程與時間成正比;時間一定時,速度與路程成正比。特別需要強調的是在很多題目中一定要先去找到這個「一定」的量;
當三個量均不相等時,學會通過其中兩個量的比例關系求第三個量的比;
學會用比例的方法分析解決一般的行程問題;
有了以上基礎,進一步加強多次相遇追及問題及火車過橋流水行船等特殊行程問題的理解,重點是學會如何去分析一個復雜的題目,而不是一味的做題;
3、幾何問題:
幾何問題是各個學校考察的重點內容,分為平面幾何和立體幾何兩大塊,具體的平面幾何里分為直線形問題和圓與扇形;立體幾何里分為表面積和體積兩大部分內容。學生應重點掌握以下內容:
等積變換及面積中比例的應用;
與圓和扇形的周長面積相關的幾何問題,處理不規則圖形問題的相關方法;
立體圖形面積:染色問題、切面問題、投影法、切挖問題;
立體圖形體積:簡單體積求解、體積變換、浸泡問題;
4、數論問題:
常考內容,而且可以應用於策略問題,數字謎問題,計算問題等其他專題中,相當重要,應重點掌握以下內容:
掌握被特殊整數整除的性質,如數字和能被9整除的整數一定是9的倍數等;
最好了解其中的道理,因為這個方法可以用在許多題目中,包括一些數字謎問題;
掌握約數倍數的性質,會用分解質因數法,短除法,輾轉相除法求兩個數的最大公因數和最小公倍數;
學會求約數個數的方法,為了提高靈活運用的能力,需了解這個方法的原理;
了解同餘的概念,學會把余數問題轉化成整除問題,下面的這個性質是非常有用的:兩個數被第三個數去除,如果所得的余數相同,那麼這兩個數的差就能被這個數整除;
能夠解決求一個多位數除以一個較小的自然數所得的余數問題,例如求1011121314…9899除以11的余數,以及求20082008除以13的余數這類問題;
5、計算問題:
計算問題通常在前幾個題目中出現概率較高,主要考察兩個方面,一個是基本的四則運算能力,同時,一些速算巧算及裂項換元等技巧也經常成為考察的重點。我們應該重點掌握以下內容:
計算基本功的訓練;
利用乘法分配率進行速算與巧算;
分小數互化及運算,繁分數運算;
估算與比較;
計算公式應用。如等差數列求和,平方差公式等;
裂項,換元與通項公式。
3. 奧數知識點有那些
一、 計算
1. 四則混合運算繁分數
⑴ 運算順序
⑵ 分數、小數混合運算技巧
一般而言:
① 加減運算中,能化成有限小數的統一以小數形式;
② 乘除運算中,統一以分數形式。
⑶帶分數與假分數的互化
⑷繁分數的化簡
2. 簡便計算
⑴湊整思想
⑵基準數思想
⑶裂項與拆分
⑷提取公因數
⑸商不變性質
⑹改變運算順序
① 運算定律的綜合運用
② 連減的性質
③ 連除的性質
④ 同級運算移項的性質
⑤ 增減括弧的性質
⑥ 變式提取公因數
形如:
3. 估算
求某式的整數部分:擴縮法
4. 比較大小
① 通分
a. 通分母
b. 通分子
② 跟「中介」比
③ 利用倒數性質
若 ,則c>b>a.。形如: ,則 。
5. 定義新運算
6. 特殊數列求和
運用相關公式:
①
②
③
④
⑤
⑥
⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n
二、 數論
1. 奇偶性問題
奇 奇=偶 奇×奇=奇
奇 偶=奇 奇×偶=偶
偶 偶=偶 偶×偶=偶
2. 位值原則
形如: =100a+10b+c
3. 數的整除特徵:
整除數 特 征
2 末尾是0、2、4、6、8
3 各數位上數字的和是3的倍數
5 末尾是0或5
9 各數位上數字的和是9的倍數
11 奇數位上數字的和與偶數位上數字的和,兩者之差是11的倍數
4和25 末兩位數是4(或25)的倍數
8和125 末三位數是8(或125)的倍數
7、11、13 末三位數與前幾位數的差是7(或11或13)的倍數
4. 整除性質
① 如果c|a、c|b,那麼c|(a b)。
② 如果bc|a,那麼b|a,c|a。
③ 如果b|a,c|a,且(b,c)=1,那麼bc|a。
④ 如果c|b,b|a,那麼c|a.
⑤ a個連續自然數中必恰有一個數能被a整除。
5. 帶余除法
一般地,如果a是整數,b是整數(b≠0),那麼一定有另外兩個整數q和r,0≤r<b,使得a=b×q+r
當r=0時,我們稱a能被b整除。
當r≠0時,我們稱a不能被b整除,r為a除以b的余數,q為a除以b的不完全商(亦簡稱為商)。用帶余數除式又可以表示為a÷b=q……r, 0≤r<b a=b×q+r
6. 唯一分解定理
任何一個大於1的自然數n都可以寫成質數的連乘積,即
n= p1 × p2 ×...×pk
7. 約數個數與約數和定理
設自然數n的質因子分解式如n= p1 × p2 ×...×pk 那麼:
n的約數個數:d(n)=(a1+1)(a2+1)....(ak+1)
n的所有約數和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )
8. 同餘定理
① 同餘定義:若兩個整數a,b被自然數m除有相同的余數,那麼稱a,b對於模m同餘,用式子表示為a≡b(mod m)
②若兩個數a,b除以同一個數c得到的余數相同,則a,b的差一定能被c整除。
③兩數的和除以m的余數等於這兩個數分別除以m的余數和。
④兩數的差除以m的余數等於這兩個數分別除以m的余數差。
⑤兩數的積除以m的余數等於這兩個數分別除以m的余數積。
9.完全平方數性質
①平方差: A -B =(A+B)(A-B),其中我們還得注意A+B, A-B同奇偶性。
②約數:約數個數為奇數個的是完全平方數。
約數個數為3的是質數的平方。
③質因數分解:把數字分解,使他滿足積是平方數。
④平方和。
10.孫子定理(中國剩餘定理)
11.輾轉相除法
12.數論解題的常用方法:
枚舉、歸納、反證、構造、配對、估計
三、 幾何圖形
1. 平面圖形
⑴多邊形的內角和
N邊形的內角和=(N-2)×180°
⑵等積變形(位移、割補)
① 三角形內等底等高的三角形
② 平行線內等底等高的三角形
③ 公共部分的傳遞性
④ 極值原理(變與不變)
⑶三角形面積與底的正比關系
S1∶S2 =a∶b ; S1∶S2=S4∶S3 或者S1×S3=S2×S4
⑷相似三角形性質(份數、比例)
① ; S1∶S2=a2∶A2
②S1∶S3∶S2∶S4= a2∶b2∶ab∶ab ; S=(a+b)2
⑸燕尾定理
S△ABG:S△AGC=S△BGE:S△GEC=BE:EC;
S△BGA:S△BGC=S△AGF:S△GFC=AF:FC;
S△AGC:S△BCG=S△ADG:S△DGB=AD:DB;
⑹差不變原理
知5-2=3,則圓點比方點多3。
⑺隱含條件的等價代換
例如弦圖中長短邊長的關系。
⑻組合圖形的思考方法
① 化整為零
② 先補後去
③ 正反結合
2. 立體圖形
⑴規則立體圖形的表面積和體積公式
⑵不規則立體圖形的表面積
整體觀照法
⑶體積的等積變形
①水中浸放物體:V升水=V物
②測啤酒瓶容積:V=V空氣+V水
⑷三視圖與展開圖
最短線路與展開圖形狀問題
⑸染色問題
幾面染色的塊數與「芯」、棱長、頂點、面數的關系。
四、 典型應用題
1. 植樹問題
①開放型與封閉型
②間隔與株數的關系
2. 方陣問題
外層邊長數-2=內層邊長數
(外層邊長數-1)×4=外周長數
外層邊長數2-中空邊長數2=實面積數
3. 列車過橋問題
①車長+橋長=速度×時間
②車長甲+車長乙=速度和×相遇時間
③車長甲+車長乙=速度差×追及時間
列車與人或騎車人或另一列車上的司機的相遇及追及問題
車長=速度和×相遇時間
車長=速度差×追及時間
4. 年齡問題
差不變原理
5. 雞兔同籠
假設法的解題思想
6. 牛吃草問題
原有草量=(牛吃速度-草長速度)×時間
7. 平均數問題
8. 盈虧問題
分析差量關系
9. 和差問題
10. 和倍問題
11. 差倍問題
12. 逆推問題
還原法,從結果入手
13. 代換問題
列表消元法
等價條件代換
五、 行程問題
1. 相遇問題
路程和=速度和×相遇時間
2. 追及問題
路程差=速度差×追及時間
3. 流水行船
順水速度=船速+水速
逆水速度=船速-水速
船速=(順水速度+逆水速度)÷2
水速=(順水速度-逆水速度)÷2
4. 多次相遇
線型路程: 甲乙共行全程數=相遇次數×2-1
環型路程: 甲乙共行全程數=相遇次數
其中甲共行路程=單在單個全程所行路程×共行全程數
5. 環形跑道
6. 行程問題中正反比例關系的應用
路程一定,速度和時間成反比。
速度一定,路程和時間成正比。
時間一定,路程和速度成正比。
7. 鍾面上的追及問題。
① 時針和分針成直線;
② 時針和分針成直角。
8. 結合分數、工程、和差問題的一些類型。
9. 行程問題時常運用「時光倒流」和「假定看成」的思考方法。
六、 計數問題
1. 加法原理:分類枚舉
2. 乘法原理:排列組合
3. 容斥原理:
① 總數量=A+B+C-(AB+AC+BC)+ABC
② 常用:總數量=A+B-AB
4. 抽屜原理:
至多至少問題
5. 握手問題
在圖形計數中應用廣泛
① 角、線段、三角形,
② 長方形、梯形、平行四邊形
③ 正方形
七、 分數問題
1. 量率對應
2. 以不變數為「1」
3. 利潤問題
4. 濃度問題
倒三角原理
例:
5. 工程問題
① 合作問題
② 水池進出水問題
6. 按比例分配
八、 方程解題
1. 等量關系
① 相關聯量的表示法
例: 甲 + 乙 =100 甲÷乙=3
x 100-x 3x x
②解方程技巧
恆等變形
2. 二元一次方程組的求解
代入法、消元法
3. 不定方程的分析求解
以系數大者為試值角度
4. 不等方程的分析求解
九、 找規律
⑴周期性問題
① 年月日、星期幾問題
② 余數的應用
⑵數列問題
① 等差數列
通項公式 an=a1+(n-1)d
求項數: n=
求和: S=
② 等比數列
求和: S=
③ 裴波那契數列
⑶策略問題
① 搶報30
② 放硬幣
⑷最值問題
① 最短線路
a.一個字元陣組的分線讀法
b.在格子路線上的最短走法數
② 最優化問題
a.統籌方法
b.烙餅問題
十、 算式謎
1. 填充型
2. 替代型
3. 填運算符號
4. 橫式變豎式
5. 結合數論知識點
十一、 數陣問題
1. 相等和值問題
2. 數列分組
⑴知行列數,求某數
⑵知某數,求行列數
3. 幻方
⑴奇階幻方問題:
楊輝法 羅伯法
⑵偶階幻方問題:
雙偶階:對稱交換法
單偶階:同心方陣法
十二、 二進制
1. 二進制計數法
① 二進制位值原則
② 二進制數與十進制數的互相轉化
③ 二進制的運算
2. 其它進制(十六進制)
十三、 一筆畫
1. 一筆畫定理:
⑴一筆畫圖形中只能有0個或兩個奇點;
⑵兩個奇點進必須從一個奇點進,另一個奇點出;
2. 哈密爾頓圈與哈密爾頓鏈
3. 多筆畫定理
筆畫數=
十四、 邏輯推理
1. 等價條件的轉換
2. 列表法
3. 對陣圖
競賽問題,涉及體育比賽常識
十五、 火柴棒問題
1. 移動火柴棒改變圖形個數
2. 移動火柴棒改變算式,使之成立
十六、 智力問題
1. 突破思維定勢
2. 某些特殊情境問題
十七、 解題方法
(結合雜題的處理)
1. 代換法
2. 消元法
3. 倒推法
4. 假設法
5. 反證法
6. 極值法
7. 設數法
8. 整體法
9. 畫圖法
10. 列表法
11. 排除法
12. 染色法
13. 構造法
14. 配對法
15. 列方程
⑴方程
⑵不定方程
⑶不等方程
4. 小學奧數七大模塊的主要知識點
模塊一:計算模塊1、速算與巧算2、分數小數四則混合運算及繁分數運算3、循環小數化分數與混合運算4、等差及等比數列5、計算公式綜合6、分數計算技巧之裂項、換元、通項歸納7、比較與估算8、定義新運算9、解方程
模塊二:數論模塊1、質數與合數2、因數與倍數3、數的整除特徵及整除性質4、位值原理5、余數的性質6、同餘問題7、中國剩餘定理(逐級滿足法)8、完全平方數9、奇偶分析10、不定方程11、進制問題12、最值
模塊三:幾何模塊(一)直線型1、長度與角度2、格點與割補3、三角形等積變換與一半模型4、勾股定理與弦圖5、五大模型(二)曲線型1、圓與扇形的周長與面積2、圖形旋轉掃過的面積問題(三)立體幾何1、立體圖形的面積與體積2、平面圖形旋轉成的立體圖形問題3、平面展開圖
模塊四:行程模塊1、簡單相遇與追及問題2、環形跑道問題3、流水行船問題4、火車過橋問題5、電梯問題6、發車間隔問題7、接送問題8、時鍾問題9、多人相遇與追及問題10、多次相遇追及問題11、方程與比例法
模塊五:應用題模塊1、列方程解應用題2、分數、百分數應用題3、比例應用題4、工程問題5、濃度問題6、經濟問題7、牛吃草
模塊六:計數模塊1、枚舉法之分類枚舉、標數法、樹形圖法2、分類枚舉之整體法、對應法、排除法3、加乘原理4、排列組合5、容斥原理6、抽屜原理7、歸納與遞推8、幾何計數9、數論計數
模塊七:雜題1、從簡單情況入手2、對應與轉化思想3、從反面與從特殊情況入手思想4、染色與覆蓋5、游戲與對策6、體育比賽問題7、邏輯推理問題8、數字謎9、數獨
5. 小學生奧數知識點總結
《最全小學奧數知識要點.doc》網路網盤資源免費下載
鏈接:https://pan..com/s/1Psg71xfW5w15QYyWFOK20A