當前位置:首頁 » 基礎知識 » 遼寧小學數學五年級常考知識點
擴展閱讀
三代飛度如何打開兒童鎖 2024-11-08 06:05:06
觀看同學去哪裡之遵義 2024-11-08 06:03:33

遼寧小學數學五年級常考知識點

發布時間: 2022-07-16 01:05:11

① 小學數學五年級位置知識點總結

1,橫排叫做行,豎排叫做列。確定第幾列一般是從左往右數,確定第幾行一般是從前往後數。

2,用有順序的兩個數表示出一個確定的位置就是數對,確定一個物體的位置需要兩個數據。

3,用數對表示位置時,先表示第幾列,再表示第幾行,不要把列和行弄顛倒。

4,寫數對時,用括弧把列數和行數括起來,並在列數和行數之間寫個逗號把它們隔開,寫作:(列,行)。

5,數對的讀法:(2,3)可以直接讀(2,3),也可以讀作數對(2,3)。

6,一組數對只能表示一個位置。

7,表示同一列物體位置的數對,它們的第一個數相同;表示同一行物體位置的數對,它們的第二個數相同。

延伸簡介:

1,數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右分別為列數和行數,即「先列後行」。

2,作用:一組數對確定唯一一個點的位置,經度和緯度就是這個原理。 例:在方格圖(平面直角坐標系)中用數對(3,5)表示(第三列,第五行)。

3,在平面直角坐標系中X軸上的坐標表示列,y軸上的坐標表示行。如:數對(3,2)表示第三列,第二行。

4,數對(X,5)的行號不變,表示一條橫線,(5,Y)的列號不變,表示一條豎線,(有一個數不確定,不能確定一個點)。

② 小學五年級數學學習重點有哪些

數學作為一門具有很強邏輯性和連續性的學科,是每個小學生都應該掌握的基礎知識.小學數學重點是基礎知識的掌握基和學習,學習數學的標准就是能夠對該學籍范圍內的題目進行正確的解答.考察公式概念是小學數學重點要掌握的知識,下面這幾個學習方法帶你學好數學.

(同學們開講)

學習小學數學重點就是注重學習的方法,但是也需要學生有堅持不懈的精神.勤學多問不恥下問是學習的良好態度,他們會把你帶到一個更高的層次,掌握好學習方法,你會對每一天的新知識充滿興趣.

③ 小學五年級數學知識

方程是重點吧,解不要忘。分數的應用。不知道有沒有長方體立方體的表面積還有體積。給你個圖,是否能拼成正方體。百分數應用。長方體正方體的棱長擴大幾倍後,表面積擴大幾倍,體積擴大幾倍。素數、合數(質數)。最大公因數最小公倍數,會在填空題里給你兩個分解速因數的式子,讓你寫他們的最大公因數最小公倍。分子分母擴大。兩樣東西同時賣出,一個虧了,一個盈利,最後虧還是盈利,虧或盈利了多少元?取幾個數的平均數、眾數、中位數。銀行的利息。一樣東西便宜(貴)了多少錢,便宜(貴)了百分之幾。能被2、3、5整除的數。通分、約分。分數的大小比較。小數的乘除。

恩恩,大概就這些 如有漏洞,不要介意啊,這些差不多都是重點吧,特別是那個立方體長方體的擴大,我以前也老錯呢……若有其他小學數學英語上的困難(奧數你就饒了我吧),基本上都能幫你解決。

④ 小學數學五年級的知識點有哪些

五年級第一學期數學概念綜合

1、0既不是正數,也不是負數。正數都大於0,負數都小於0。通常情況下正、負數表示兩種相反關系的量,如果盈利用正數表示,那麼虧損就用負數,如果高於海平面用正數表示,那麼低於海平面用負數表示。水沸騰的溫度是100℃,水結冰的溫度是0℃。
2、在數不規則圖形的面積時不滿一格的看作半格。先數滿格,再數半格。
3、長方形的周長=(長+寬)×2 長方形的面積=長×寬
正方形的周長=邊長×4 正方形的面積=邊長×邊長
4、沿著平行四邊形的任意一條高剪開,然後通過移動拼成一個長方形。長方形的長等於平行四邊形的底,長方形的寬等於平行四邊形的高。因為長方形的面積=長×寬,所以平行四邊形的面積=底×高,用字母表示S=a×h。
5、將兩個完全一樣的三角形拼成一個平行四邊形,這個平行四邊形的底等於三角形的底,平行四邊形的高等於三角形的高,拼成的平行四邊形的面積是每個三角形面積的2倍,每個三角形的面積是拼成的平行四邊形面積的一半。因為平行四邊形的面積等於底×高,所以三角形的面積等於底×高÷2。用字母表示S=a×h÷2。 等底等高的兩個三角形的面積相等。
6、在平行四邊形里畫一個最大的三角形,這個三角形的面積等於這個平行四邊形面積的一半。
用細木條釘成一個長方形框架,如果把他拉成一個平行四邊形,則它的周長不變,面積變小了,因為底不變,高變小了;
如果將平行四邊形框架拉成一個長方形,則他們的周長不變,面積變大了。
7、將兩個完全一樣的梯形拼成一個平行四邊形,這個平行四邊形的底等於梯形的上底與下底的和,平行四邊形的高等於梯形的高,拼成的平行四邊形的面積是每個梯形面積的2倍,每個梯形的面積是拼成的平行四邊形面積的一半。因為平行四邊形的面積=底×高,所以梯形的面積=(上底+下底)×高÷2字母表示S=(a+b)×h÷2.
8、分母是10、100、1000……的分數都可以用小數表示。
分母是10的分數寫成一位小數,表示十分之幾。
分母是100的分數寫成兩位小數,表示百分之幾。
分母是1000的分數寫成三位小數,表示千分之幾。
小數點左邊第一位是個位,計數單位個(1)
小數點左邊第二位是十位,計數單位十(10)
小數點右邊第一位是十分位,計數單位十分之一(0.1)
小數點右邊第二位是百分位,計數單位百分之一(0.01)
小數點右邊第三位是千分位,計數單位千分之一(0.001)
小數部分最高位是十分位,最大的計數單位是十分之一。相鄰兩個計數單位之間的進率是10。
9、1裡面有(10)個0.1(十分之一) ,0.1(十分之一)裡面有10個0.01(百分之一)0.01(百分之一)裡面有10個0.001(千分之一),1裡面有100個0.01。
10、小數的性質:在小數的末尾添上「0」或去掉「0」,小數的大小不變。
11、用「萬」作單位:1、在萬位後面點上小數點;2、添個「萬」字。用「=」號。用「億」作單位:1、在億位後面點上小數點;2、添個「億」字。用「=」號。注意:改寫不能改變原數的大小。
省略萬後面的尾數:要看「千」位,用四捨五入法取近似值。用「≈」號。省略億後面的尾數:要看「千萬」位,用四捨五入法取近似值。用「≈」號。
保留整數,就是精確到個位,要看小數部分第一位(十分位)。
保留一位小數,就是精確到十分位,要看小數部分第二位(百分位)。
保留兩位小數,就是精確到百分位,要看小數部分第三位(千分位)。
注意:在表示近似值時末尾的「0」一定不能去掉。
例如,一個小數保留兩位小數是1、50,末尾的「0」不能去掉。雖然1、50與1.5大小相等,但表示的精確程度不一樣,1.50表示精確到百分位,而1.5表示精確到十分位,所以1.50在表示近似數時末尾的「0」一定不能去掉。
12、計算小數加減法時,要把小數點對齊,也就是相同數位對齊。
13、找規律:1、找到周期;2、將個數÷周期;3、余數是幾就是第幾個。4、要算每個項目一共有幾個,可以分三步去做:(1)每幾個為一組;(2)每組中有幾個;再乘一共有組數(3)最後加上余數中的個數就等於一共有多少個。
14、解決問題中的策略:用一一列舉法將可能的情況用列表法全部列舉出來,列舉時的技巧是先考慮數字較大的(放在第一行)。
15、在計算小數乘法時(1)算:按照整數乘法的法則進行計算;(2)看:兩個因數中一共有幾位小數(3)數:就從積的末尾起數出幾位;(4)點:點上小數點;(5)去:去掉小數末尾的0。
16、一個小數乘10、100、1000……只要把小數點向右移動一位、兩位、三位……
一個小數除以10、100、1000……只要把小數點向左移動一位、兩位、三位……
17、1平方千米就是邊長1000米的正方形的面積,等於1000000平方米。1公頃就是邊長100米的正方形的面積,等於10000平方米。 1平方千米=100公頃。1公頃=100公畝=10000平方米
18、整數加、減、乘、除法的運算定律對於小數也同樣適用。
加法交換律:a+b=b+a 加法結合律:(a+b)+c= a +(b+c)
乘法交換律:a×b=b×a 加法結合律:(a×b)×c= a ×(b×c)
減法的性質:a―b―c = a―(b+c)
除法的性質:a÷b÷c = a÷(b×c)
19、除數是小數的除法,首先看除數一共有幾位小數,然後就根據商不變的規律,將被除數和除數同時擴大,使之變為除數是整數的除法,重點是將商的小數點和現在被除數的小數點對齊,除不盡的添「0」繼續除(一下子只能添一個0),哪一位不夠商1就在那一位上商0。
20、當一個因數不為0時,另一個因數大於(小於)1,積就大於(小於)第一個因數。(一個因數乘一個大於1的數,積會越乘越大;乘一個小於1的數,積會越乘越小。)
A×(>1)(>)A A×(<1)(<)A
當被除數不為0時,除數大於(小於)1,商反而小於(大於)被除數。(除以一個大於1的數,商反而越除越小;除以一個小於1的數,商反而越除越大。)
21、質量單位:
1噸=1000千克, 1千克=1000克,
長度單位:
1千米=1000米 1米=10分米=100厘米=1000毫米
容積單位:
1升=1000毫升
面積單位:
1平方千米=100公頃 1公頃=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米

⑤ 數學五年級上冊人教版知識點歸納 15條

小學五年級數學上冊復習知識點歸納總結
第一單元小數乘法
1.小數乘法計算方法:按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0佔位。
2、一個數(0除外)乘大於1的數,積比原來的數大; 一個數(0除外)乘小於1的數,積比原來的數小。
3、求近似數的方法一般有三種:
⑴四捨五入法 (常用) ; ⑵進一法; ⑶去尾法
4、計算錢數,保留兩位小數,表示精確到分。保留一位小數,表示精確到角。
5、小數四則運算順序跟整數四則運算順序是一樣的。
6、運算定律和性質:
加法交換律:a+b=b+a 加法結合律:(a+b)+c=a+(b+c)
乘法:乘法交換律:a×b=b×a
乘法結合律:三個數相乘,先把前兩個數相乘,再和最後一個數相乘,或先把後兩個數相乘,再和第一個數相乘,積不變. (a×b)×c=a×(b×c)
乘法分配律:兩個數的和(或者差)同一個數相乘,可以先把這兩個數(或者被減數與減數)分別同這個數相乘,再相加(或者再相減)。 (a+b)×c=a×c+b×c或 (a-b)×c=a×c-b×c
減法性質:從一個數里連續減去兩個數,我們可以減去兩個減數的和,或者交換兩個減數的位置。 a-b-c=a-(b+c) a-b-c=a-c-b
除法性質:從一個數里連續除數兩個數,我們可以除以兩個除數的積,或者交換兩個除數的位置。a÷b÷c=a÷(b×c) a÷b÷c=a÷c÷b
去括弧: 括弧前是加號的,去掉括弧後,括弧內的符號不變號;括弧前是減號的,去掉括弧後,括弧內的符號要變號。
a+(b-c)=a+b-c a-(b-c)=a-b+c
第二單元小數除法
9、小數除以整數的計算方法:小數除以整數,按整數除法的方法去除,商的小數點要和被除數的小數點對齊。整數部分不夠除,商0,點上小數點。如果有餘數,要添0再除。
10、除數是小數的除法的計算方法:先將除數和被除數擴大相同的倍數(把小數點向右移動相同的位數),使除數變成整數,再按「除數是整數的小數除法」的法則進行計算。
注意:向右移動小數點時,如果被除數的位數不夠,在被除數的末尾用0補足。
12、除法中的變化規律:①商不變性質:被除數和除數同時乘或除以同一個數(0除外),商不變。②除數不變,被除數乘或除以幾,商隨著乘或除以幾。③被除數不變,除數乘或除以幾,商就除以或乘幾。④被除數大於除數,商就大於1;被除數小於除數,商就小於1。⑤一個數除以大於1的數,商就小於被除數;一個數除以小於1的數,商就大於被除數。⑥積不變性質:一個因數乘一個數,另一個除以同一個數(0除外),積不變。⑦一個因數不變,另一個數乘幾,積就乘幾。⑧一個因數不變,另一個因數除以幾,積就除以幾。
13、一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。 X
一個循環小數的小數部分,依次不斷重復出現的數字。(如6.321321…的循環節是321,簡便記法為6.321;如0.33…的循環節是3,簡便記法為0.3。)循環小數是無限小數,無限小數不一定是循環小數。
14、小數部分的位數是有限的小數,叫做有限小數。小數部分的位數是無限的小數,叫做無限小數。無限小數分為無限循環小數和無限不循環小數。
第三單元觀察物體
15、從不同的角度觀察物體,看到的形狀可能是不同的;觀察長方體或正方體時,從固定位置最多能看到三個面,最少看到一個面。圓柱體從上面看到的形狀是圓形,從其他方向看到的是長形或正方形。球體無論從哪個角度看,看到的形狀都是圓形。
第四單元簡易方程
16、在含有字母的式子里,字母中間的乘號可以記作「•」,也可以省略不寫。加號、減號、除號以及數與數之間的乘號不能省略。
17、a×a可以寫作a•a或a ,a 讀作a的平方 2a表示a+a
(1a=a這里的「1」我們不寫)
18、方程:含有未知數的等式稱為方程(★方程必須滿足的條件:必須是等式 必須有未知數,兩者缺一不可)。使方程左右兩邊相等的未知數的值,叫做方程的解。求方程的解的過程叫做解方程。
19、解方程原理:天平平衡
等式性質一:方程兩邊同時加上或減去同一個數,左右兩邊仍然相等。等式性質二:方程兩邊同時乘或除以同一個不為0數,左右兩邊仍然相等。
21、所有的方程都是等式,但等式不一定都是方程。
22、方程的檢驗過程:方程左邊 = 方程右邊
23、方程的解是一個數; 解方程式是一個計算過程。 所以,X=…是方程的解。
常見的等量關系:①路程=速度×時間
②工作總量=工作效率×工作時間
③總價=單價 × 數量
第五單元多邊形的面積
23、長方形周長=(長+寬)×2 字母公式:C=(a+b)×2
長方形面積=長×寬 字母公式:S=ab
正方形周長=邊長×4 字母公式:C=4a
正方形面積=邊長×邊長 字母公式:S=a2
平行四邊形的面積=底×高 字母公式: S=ah
三角形的面積=底×高÷2 字母公式: S=ah÷2
(三角形的底=面積×2÷高; 三角形的高=面積×2÷底)
梯形的面積=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2(上底=面積×2÷高-下底,下底=面積×2÷高-上底;
高=面積×2÷(上底+下底) )
25、三角形面積公式推導: 平行四邊形可以轉化成一個長方形; 兩個完全一樣的三角形可以拼成一個平行四邊形,
長方形的長相當於平行四邊形的底;長方形的寬相當於平行四邊形的高;因為長方形面積=長×寬,所以平行四邊形面積=底×高,長方形的面積等於平行四邊形的面積。 平行四邊形的底相當於三角形的底;平行四邊形的高相當於三角形的高;平行四邊形的面積等於等底等高三角形面積的2倍。
27兩個完全一樣的梯形可以拼成一個平行四邊形。
平行四邊形的底相當於梯形的上下底之和;平行四邊形的高相當於梯形的高;平行四邊形面積等於梯形面積的2倍,因為平行四邊形面積=底×高,所以梯形面積=(上底+下底)×高÷2
28、等底等高的平行四邊形面積相等;等底等高的三角形面積相等;
等底等高的平行四邊形面積是三角形面積的2倍。
29、長方形框架拉成平行四邊形,周長不變,面積變小。
第六單元統計與可能性
31、平均數=總數量÷總份數
32、中位數的優點是不受偏大或偏小數據的影響,用它代表全體數據的一般水平更合適。
第七單元數學廣角
33、數不僅可以用來表示數量和順序,還可以用來編碼。
34、郵政編碼:由6位組成,前2位表示省(直轄市、自治區)
0 5 4 0 0 1
前3位表示郵區, 前4位表示縣(市),最後2位表示投遞局
35、身份證18位,如130521197803010019
13表示河北省 05表示邢台市 21表示邢台縣 19780301是出生日期 001是順序碼 9校驗碼
倒數第二位的數字用來表示性別,單數表示男,雙數表示女。

⑥ 小學五年級數學上冊復習教學知識點歸納總結

第一單元小數乘法 1、小數乘整數P2、3意義——求幾個相同加數的和的簡便運算。 如1.5×3表示1.5的3倍是多少或3個1.5的和的簡便運算。 計算方法先把小數擴大成整數按整數乘法的法則算出積再看因數中一共有幾位小數就從積的右邊起數出幾位點上小數點。 2、小數乘小數P4、5意義——就是求這個數的幾分之幾是多少。 如1.5×0.8就是求1.5的十分之八是多少。 1.5×1.8就是求1.5的1.8倍是多少。 計算方法先把小數擴大成整數按整數乘法的法則算出積再看因數中一共有幾位小數就從積的右邊起數出幾位點上小數點。 注意計算結果中小數部分末尾的0要去掉把小數化簡小數部分位數不夠時要用0佔位。 3、規律1P9一個數0除外乘大於1的數積比原來的數大 一個數0除外乘小於1的數積比原來的數小。 4、求近似數的方法一般有三種P10 ⑴四捨五入法⑵進一法⑶去尾法 5、計算錢數保留兩位小數表示計算到分。保留一位小數表示計算到角。 6、P11小數四則運算順序跟整數是一樣的。 7、運算定律和性質 加法加法交換律a+b=b+a 加法結合律:(a+b)+c=a+(b+c) 減法減法性質a-b-c=a-(b+c) a-(b-c)=a-b+c 乘法乘法交換律a×b=b×a 乘法結合律(a×b)×c=a×(b×c) 乘法分配律(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】 除法除法性質a÷b÷c=a÷(b×c) 第二單元小數除法 8、小數除法的意義已知兩個因數的積與其中的一個因數求另一個因數的運算。 如0.6÷0.3表示已知兩個因數的積0.6與其中的一個因數0.3求另一個因數的運算。
9、小數除以整數的計算方法P16小數除以整數按整數除法的方法去除。商的小數點要和被除數的小數點對齊。整數部分不夠除商0點上小數點。如果有餘數要添0再除。 10、P21除數是小數的除法的計算方法先將除數和被除數擴大相同的倍數使除數變成整數再按「除數是整數的小數除法」的法則進行計算。 注意如果被除數的位數不夠在被除數的末尾用0補足。 11、(P23)在實際應用中小數除法所得的商也可以根據需要用「四捨五入」法保留一定的小數位數求出商的近似數。 12、(P24、25)除法中的變化規律①商不變性質被除數和除數同時擴大或縮小相同的倍數0除外商不變。②除數不變被除數擴大商隨著擴大。③被除數不變除數縮小商擴大。 13、(P28)循環小數一個數的小數部分從某一位起一個數字或者幾個數字依次不斷重復出現這樣的小數叫做循環小數。 循環節一個循環小數的小數部分依次不斷重復出現的數字。如6.3232„„的循環節是32. 14、小數部分的位數是有限的小數叫做有限小數。小數部分的位數是無限的小數叫做無限小數。 第三單元觀察物體 15、從不同的角度觀察物體看到的形狀可能是不同的觀察長方體或正方體時從固定位置最多能看到三個面。 第四單元簡易方程 16、P45在含有字母的式子里字母中間的乘號可以記作「·」也可以省略不寫。 加號、減號除號以及數與數之間的乘號不能省略。 17、a×a可以寫作a·a或a a 讀作a的平方。 2a表示a+a 18、方程含有未知數的等式稱為方程。 使方程左右兩邊相等的未知數的值叫做方程的解。 求方程的解的過程叫做解方程。 19、解方程原理天平平衡。 等式左右兩邊同時加、減、乘、除相同的數0除外等式依然成立。 20、10個數量關系式加法和=加數+加數 一個加數=和-兩一個加數 減法差=被減數-減數 被減數=差+減數 減數=被減數-差 乘法積=因數×因數 一個因數=積÷另一個因數 除法商=被除數÷除數 被除數=商×除數 除數=被除數÷商
21、所有的方程都是等式但等式不一定都是等式。 22、方程的檢驗過程方程左邊=„„ 23、方程的解是一個數 解方程式一個計算過程。=方程右邊 所以X=„是方程的解。 第五單元多邊形的面積 23、公式長方形周長=(長+寬)×2——【長=周長÷2-寬寬=周長÷2-長】 字母公式C=(a+b)×2 面積=長×寬 字母公式S=ab 正方形周長=邊長×4 字母公式C=4a 面積=邊長×邊長 字母公式S=a 平行四邊形的面積=底×高 字母公式 S=ah 三角形的面積=底×高÷2 ——【底=面積×2÷高高=面積×2÷底】 字母公式 S=ah÷2 梯形的面積=上底+下底×高÷2 字母公式 S=a+bh÷2 【上底=面積×2÷高下底下底=面積×2÷高-上底 高=面積×2÷上底+下底】 24、平行四邊形面積公式推導剪拼、平移 25、三角形面積公式推導旋轉 平行四邊形可以轉化成一個長方形 兩個完全一樣的三角形可以拼成一個平行四邊形 長方形的長相當於平行四邊形的底 平行四邊形的底相當於三角形的底 長方形的寬相當於平行四邊形的高 平行四邊形的高相當於三角形的高 長方形的面積等於平行四邊形的面積 平行四邊形的面積等於三角形面積的2倍 因為長方形面積=長×寬所以平行四邊形面積=底×高。 因為平行四邊形面積=底×高所以三角形面積=底×高÷2 26、梯形面積公式推導旋轉 27、三角形、梯形的第二種推導方法老師已講自己看書 兩個完全一樣的梯形可以拼成一個平行四邊形 知道就行。 平行四邊形的底相當於梯形的上下底之和 平行四邊形的高相當於梯形的高
平行四邊形面積等於梯形面積的2倍 因為平行四邊形面積=底×高所以梯形面積=(上底+下底)×高÷2 28、等底等高的平行四邊形面積相等等底等高的三角形面積相等 等底等高的平行四邊形面積是三角形面積的2倍。 29、長方形框架拉成平行四邊形周長不變面積變小。 30、組合圖形轉化成已學的簡單圖形通過加、減進行計算。 第六單元統計與可能性 31、平均數=總數量÷總份數 32、中位數的優點是不受偏大或偏小數據的影響用它代表全體數據的一般水平更合適。 第七單元數學廣角 33、數不僅可以用來表示數量和順序還可以用來編碼。 34、郵政編碼由6位組成前2位表示省直轄市、自治區 0 5 4 0 0 1 前3位表示郵區 前4位表示縣市 最後2位表示投遞局 35、身份證碼 18位 1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9 河北省 邢台市 邢台縣 出生日期 順序碼 校驗碼 倒數第二位的數字用來表示性別單數表示男雙數表示女

⑦ 小學一到五年級數學知識重點匯總(詳細)

小學五年級全科目課件教案習題匯總語文數學

三 單 元
有兩個相對的面是正方形,長方體中相對的面完全相同;有12條棱,相對的棱長度相等;有8個頂點。
2、正方體的特徵:正方體有6個面,這6個面都是正方形,所有的面完全相同;有12條棱,所有的棱長度相等;有8個頂點。 正方體可以看成是長、寬、高都相等的長方體。
3、相交於一個頂點的3條棱的長度分別叫做長方體的長、寬、高。 4、長方體或者正方體的12條棱的總長度叫做他們的棱長總和。 長方體的棱長總和=(長+寬+高)×4, 用字母可以表示為=C長方體(a+b+h)4。
正方體的棱長總和=棱長×12,用字母可以表示為=12aC正方體。 5、長方體或者正方體6個面的總面積叫做它的表面積。
長方體的表面積=(長×寬+長×高+寬×高)×2,用字母表示為
=(ab+ah+bh)2S長方體。
正方體的表面積=棱長×棱長×6,用字母表示為2=6aS正方體。 6、物體所佔空間的大小叫做物體的體積。
計量體積要用體積單位,常用的體積單元有立方厘米、立方分米、立方米,用字母表示為3cm、3dm、3m。3311000dmcm,33
11000mdm。 7、棱長是1 cm的正方體,體積是13cm。一個手指尖的體積大約是13
cm。
棱長是1 dm的正方體,體積是13dm。一個粉筆盒的體積大約是13
cm。
棱長是1 m的正方體,體積是13
m。用3根1 m長的木條,做成一個互成直角的架子架在牆角,它的體積是13
cm。
8、長方體的體積=長×寬×高,用字母表示為=abhV長方體。 正方體的體積=棱長×棱長×棱長,用字母表示為3
=aV正方體。 長方體和正方體的統一公式:支柱體的體積=底面積×高。
9、容器所能容納物體的體積,叫做它的容積。計量容積一般就用體積單位,計量液體的體積,常用容積單位升和毫升,用字母表示是L和ml。

4
311Ldm,311mlcm,11000Lml
10、長方體或正方體容器的容積的計算方法,跟體積的計算方法相同。但是要從容器裡面量出長、寬、高。
11、形狀不規則的物體,求他們的體積,可以用排水法。水面上升或者下降的那部分水的體積就是物體的體積。

第 四 單 元
一、分數的意義
1、在進行測量、分物或計算時,往往不能正好得到整數的結果,這時常用分數來表示。
2、一個物體、一些物體等都可以看做一個整體,把這個整體平均分成若干份,這樣的一份或幾份都可以用分數來表示。把什麼平均分,什麼就是單位「1」。 3、把單位「1」平均分成若干份,表示其中的一份的數叫做分數單位。一個分數的分母越大,分數單位越小;一個分數的分母越小,分數單位越大。 4、分數與除法的關系:分數可以表示整數除法的商;除法里的被除數相當於分數中的分子,除數相當於分數里的分母,出號相當於分數線。 =
被除數被除數除數除數,=分子
分子分母分母

5、求一個數是另一個數的幾分之幾的解題方法:用除法計算。 =一個數一個數另一個數另一個數

在解決問題中,要先找出單位「1」和比較量,一般來說,問題中「是」或「占」的後面是單位「1」,前面的比較量,如果沒出現這兩個字,要根據題意判斷, 再根據公式「1=
1
比較量
比較量單位「」單位「」 」計算。
6、低級單位化高級單位(用分數表示)時,等於低級單位的數值兩個單位間的進率
,能約分的要約成最簡分數。 二、真分數和假分數
1、分子比分母小的分數叫做真分數,真分數小於1;
分子比分母大或者分子和分母相等的分數叫做假分數,假分數大於1或等於1;
由整數部分(不包括0)和真分數合成的分數叫做帶分數。
2、假分數化成整數或帶分數,要用分子除以分母。當分子是分母的倍數時,

5
能化成整數;當分子不是分母的倍數時,能化成帶分數,商是帶分數的整數部分,余數是分數部分的分子,分母不變。
3、帶分數化成假分數,用原來的分母做分母,用分母和整數的乘積再加上原來的分子作分子,用式子表示成:+=分母整數分子帶分數分母

三、分數的基本性質、約分、通分
1、分數的基本性質:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。可以利用分數的基本性質,對分數進行約分或通分,或者把分母化成指定的分母或分子的分數。
2、兩個數公有的因數,叫做它們的公因數。其中最大的公因數叫做它們的最大公因數。當兩個數成倍數關系時,較小的數就是他們的最大公因數;當兩個數只有公因數1時,它們的最大公因數就是1.(公因數只有1的兩個數叫做互質數)
3、求兩個數的最大公因數,可以用列舉法分別列出這兩個數的因數,再尋找公有的因數。也可以用短除法計算。
4、分子和分母只有公因數1的分數叫做最簡分數。
把一個分數化成和它相等,但分子分母都比較小的分數叫做約分。約分時可以用分子和分母的公因數(1除外)去除,一步步來約分,也可以直接用最大公因數去除,直接約分。
5、兩個數公有的倍數叫做它們的公倍數,其中最小的倍數叫做它們的最小公倍數。一般情況下,求一個數的倍數可以用列舉法、圖示法、大數翻倍法、短除法。當兩個數是倍數關系時,大數就是它們的最小公倍數;互質的兩個數的最小公倍數是它們的積。
6、把異分母分數分別化成和原來的分數相等的同分母分數,叫做通分。 四、分數和小數的互化 1、小數化分數的方法
小數化成分數時,小數部分有幾位小數,就在1後面寫幾個「0」作分母,把原來的小數去掉小數點後作分子。小數化成分數後,能約分的要約成最簡分數。
2、分數化小數的方法

6
①分母是10,100,1000„的分數化成小數,可以直接去掉分母,看分母1後面後面有幾個0,就在分子中從最後一位起向左數出幾位,點上小數點;分子位數不足時,用0補足,整數部分寫0.
②不是以上這些特徵的分數時,要用分子除以分母。除不盡的,根據「四捨五入」法保留一定的位數。
3、判斷一個分數是否能化成有限小數的方法:一個最簡分數,如果墳墓中只含有質因數2或5,這個分數就能化成有限小數。 4、比較幾個數的大小
如果只有兩個分數要比較大小:①分母相同的,分子大的分數就大;②分子相同的,分母越大的分數反而越小;③分子、分母都不相同的,要化成分母相同的分數再比較。
幾個數比較大小,包含分數和小數時,一般把分數化成小數後再比較大小,最後需要比較的是原數的大小。(需要特別注意是從大到小排列時要用大於號連接;而小到大排列,用小於號連接)

第 五 單 元
1、同分母分數相加減,計算時,分母不變,只是把分子相加減。
2、計算時要注意:當計算的結果是假分數時,要化成整數或帶分數;當計算的結果能約分的,一定要約成最簡分數;當幾個分數相減,分子等於0時,這個分數就是0.
3、任意一個自然數(1除外)作為分母的所有最簡真分數的和,等於最簡真分數的個數除以2.
4、計算異分母分數加減法,因為分母不同,就意味著分數單位不同,不能直接相加減。根據分數的基本性質,先進行通分,然後再按照同分母的分數加減法的計演算法則進行計算。
5、分數加減混合運算的運算順序和整數加減混合運算的順序相同,即從左到右依次計算,有括弧的要先算括弧裡面的。整數加法的交換律、結合律、減法的性質對於分數加減法仍然適用。

第六 單元 1、在一組數據中,出現次數最多的數就是這組數據的眾數,眾數能夠反映一組數據的集中程度。
2、在一組數據中,眾數可能不止一個,也可能沒有眾數。

⑧ 小學五年級數學基本知識概括

乘法口訣表背吧!