當前位置:首頁 » 基礎知識 » 有才老師講解數學知識
擴展閱讀
泰拉瑞亞經典如何變困難 2024-11-08 06:43:56
pr怎麼導入歌詞做字幕 2024-11-08 06:43:55

有才老師講解數學知識

發布時間: 2022-07-15 09:15:58

⑴ 怎麼才能學好數學呀!! 有才的人來提提意見好不!!!

一.人人都能學好數學 數學對很多人來說是枯燥的、深奧的、抽象的,這是不爭的事實,但不等於說就是難學的。有位數學名人說過:「掌握數學,就是善於解題,但不完全在於解題的多少,還在於解題前的分析、探索和解題後的深思窮究。」也就是說,解數學題不是要把自己當成解題的機器、解題的奴隸,而應該努力成為解題的主人,是要從解題中吸取解題的方法、思想,鍛煉自己的思維,這就是所謂的「數學題要考查考生的能力」。那麼解題前後該如何「分析探索」與「深思窮究」呢?實際上,世間萬事萬物都是相通的,不知道同學們是否喜歡語文?要想寫一篇優秀的作文,必須審題、創意,要有寫作提綱,這種創意須是來源於自己的生活,是自己親身經歷、所感所想的,靠杜撰絕對寫不出好文章。那麼解決一道數學題,也必須審題,要弄清題目的已知是什麼?待求的是什麼?這叫「有的放矢」。「的」就是要打開「已知」與「待求」之間的通道,就是「創意」,就是要利用自己現有的數學知識、解題方法溝通這種聯系,或將問題化整為零、或將問題化為比較熟悉的問題。這種「創意」是一種長期數學思維的積淀,是自己解題經驗的總結,是解題之後的感悟。因此,解題之後的總結是最不容忽視的。記得從小學開始,語文老師總是要求我們在閱讀一篇文章之後說出它的中心思想,目的何在?我們做完一道數學題,也要想著總結它的中心思想:題目涉及到哪些知識點;解題中用到哪些解題方法或思想,以此與命題人「溝通」,才能達到「領悟」的境界。當然,解題後的總結,還應該考慮:問題是否可以有其它解法;是否可以進行推廣用來解決與之相似的問題。只有做到「舉一反三」,才能真得會「觸類旁通」。總之,做任何學問都不能貪大求全,而應精益求精。 二.注意改進學習習慣 1.知識掌握過程中的三種不良習慣 忽略理解,死記硬背:認為只要記住公式、定理就萬事大吉,而忽略了知識導出過程的理解,既造成提取應用知識的困難,更一次又一次地失去了對知識推導過程中孕含的思想方法的吸取。如三角公式「常記常忘,屢記不會」的根本原因就在於此,進而也談不上用三角變換解題的自覺性了。 注重結論,輕視過程:數學命題的特點是條件和結論之間緊密相聯的因果關系,不注意條件的掌握,常會導致錯誤的結果,甚至是正確的結果、錯誤的過程。如學習中看不出何時需討論、如何討論。原因之一在於數學知識的前提條件模糊(如指對數函數的單調性,不等式的性質,等比數列求和公式,最值定理等知識) 忽略及時復習和強化理解:「溫故而知新」這一淺顯的道理誰都懂,但在學習過程中持之以恆地應用者不多。由於在老師的精心誘導教誨下,每節課的內容好像都「懂」,因此也就捨不得花八至十分鍾的「寶貴」時間回顧當天的舊知。殊不知課上的「懂」是師生共同參與努力的結果,要想自己「會」,必須有一個「內化」的過程,而這個過程必須從課內延伸到課外。切記從「懂」到「會」必須有一個自身「領悟」的過程,這是誰也無法取締的過程。 2.解決問題過程中的四種不良心態 缺乏對已學習過的典型題目及典型方法的積累:部分同學做了大量的習題,但收效甚微,效果不佳。究其原因,是迫於壓力為完成任務而被動做題,缺乏必要的總結和積累。在積累的基礎上增強「題性」、「題感」,逐步形成「模塊」,不斷吸取其中的智育營養,方可感悟出隱藏於模式中的數學思想方法。這就是從量的積累到質的變化的過程,只有靠「積累—消化—吸收」才能「升華」。 在解決新問題時,缺乏探索精神:「學數學不做題目,等於入寶山而空返」(華羅庚語)。我們面對的社會,新的問題不斷出現,無處不在,信息時代尤為如此。學習數學,需要在解決問題的實踐中不斷探索。怕困難、過份依賴老師,久而久之便會形成不積極鑽研的習慣。我們在課堂教學中採用「先思後講,先做後評」的方法,正是為激發學習者的積極主動的探索熱情。希望同學們增強自信、勇於猜想、主動配合教師,使數學課堂教學成為學習者的思維活動的交流過程。 忽視解題過程的規范化,只追求答案:數學解題的過程是一個化歸與轉化的過程,當然離不開規范嚴謹的推理與判斷。解題中跳躍太大、亂寫字母、徒手作圖,如此態度對待稍難的問題,是難以產生正確答案的。我們說解題過程的規范不只是規范書寫,更主要是規范「思考方法」,同學們應該學會不斷調控自己的思維過程,力爭使解題盡善盡美。 不注重算理,忽視對運算途徑的選擇與實施:數學運算是按規則進行的,通用的規則和通行的方法當然要牢固掌握。但靜止的相對性和運動的絕對性又決定了數學解題中的通法不可能一成不變。因此,在運用通性、通法、通則解決問題時,不能忽視算理,更應注重對合理簡捷運算途徑的猜想、推斷與選擇,那種不假思索、順水推舟的做題方法必須改進。用「看」題或「想」題代替「做」題的學習方法,是引起運算能力差、導致運算繁冗的根本原因。 3.復習鞏固中的三種錯誤認識 認為多做題可以代替復習理解:學好數學,做大量的配套練習是必要的。但只練不想、不思、不總結,未必有好結果。只會埋頭做題,不會抬頭思考的同學,雖然做了大量的題目,以往所學的知識也難以保持隨機提取的狀態,只有靠滾動式的總結,才能使知識永遠「保態」,並且實現階段性知識層次的飛躍。我們平時復習中的練習,階段性的測試與月考,正是為了引導同學們多層次、全方位、多角度的復習理解,使知識連點成線構成網路。因此,善思考、勤總結是復習過程中必須的,也是知識和方法不斷積累的有效途徑。 不注意知識間的聯系和知識的系統性:高考數學科命題常在知識的交匯處考查學生綜合應用知識的能力。如果我們僅靠單一的知識掌握,缺乏對知識間的聯系與知識系統性的充分認識,必然會導致認識膚淺,綜合能力差,當然很難取得良好的成績。我們平時教學中的「前後兼顧」和「解題規律的總結」等均是為了強化知識間的聯系,望引起同學們足夠的重視。 不善於糾正已犯過的錯誤:糾正錯誤的過程就是學習進步的過程,人類社會也是在與錯誤作斗爭的過程中發展的。因此,善於糾錯,及時總結經驗教訓也是學習的重要環節。部分同學對老師批改的作業常停留在「√」和「×」上,甚至熟視無睹;對試卷只問得分的多少,而不關心或很少關心為什麼「錯」。須知:回憶,不管是甜、是苦,總是有益的、美好的,總能鼓勵自己更有信心地面向未來!改正錯誤的過程就是學習進步的過程。 總之,課前預習做好心理准備;課上腦、耳、手、口協調作戰,提高45分鍾的吸取效益;課後復習總結,充分思考與內化。相信通過同學們積極主動的學習,一定會成為數學的主人。 祝你能學好數學!

⑵ 范葦老師講座,數學有了好方法寫觀後感

《范葦老師講座,數學有了好方法》觀後感
對數學產生興趣,首先要喜歡數學。我差點就走入了誤區。聽到過一個真實的案例,有位老教師教小學五年級數學,班上只有十幾個學生,到了復習的時候,每個學生都買不同的試卷,這樣下來一共做了十幾套。考試成績很好,平均分九十多,遙遙領先。有次這位老師回辦公室喝水,看著杯子里的水顏色不對,聞了聞氣味也不行,一問之下才知道,原來孩子往裡倒了潔廁劑。有多大的仇?成績好了有什麼用?孩子連起碼的尊重和尊敬都不給老師。

上學期我幾乎是這樣過來的,到了臨考試的時候,天天做試卷,做的孩子頭疼,我也頭疼。考得好了就愛看試卷,考得不好試卷就跟石頭一樣拱不動,到最後,成績也沒好到哪裡去。因為我發現,我沒把方法和思想教給孩子,只教會了機械計算。

范老師開學就教一年級,她覺得建立數學的興趣最重要。所以她的第一堂課是數學畫,畫《我心中的校園》。第一天開學家長帶著孩子參觀校園,新鮮感是最強的,孩子眼中的校園肯定多姿多彩!畫畫對孩子來說是很簡單的一件事,根本不需要引導,如果引導了,成人化的痕跡就明顯。哪怕是塗鴉,孩子的畫也是很棒的!我們老師可以做什麼?只需要在旁邊誇獎!一堂課要有因有果,最重要的是畫完之後怎麼辦?讓孩子到全班來分享自己的想法。找找圖畫里的數學信息。分享也有很多方法。除了分享,可以做成數學畫牆裝飾教室,也可以把孩子的畫做為上課的主題圖。從畫畫中引發對數學的興趣,從而愛上數學,喜歡上數學課。

范老師的第二個方法是給學生講數學故事。為了讓孩子喜歡數學,就編了不少數學童話。比如《腳印》。這是平面圖形的認識,是一年級下冊的內容。先給孩子講《腳印》這個故事,然後留一節課讓孩子自己拿東西去印,留下各種各樣的「腳印」,觀察這個腳印是什麼樣子的。在這些活動中,一年級上期的孩子就能完成下冊的學習任務,而且還很輕松很愉快。學習並不困難,主要看你採取了什麼樣的學習方式,只要是適合孩子的方法,學習對孩子來說都是快樂的!范老師從一年級開始編數學童話,到了三年級孩子就可以自己編故事了。到了五年級故事就很像模像樣。孩子們還發表了很多作品,越學越有滋味。

方法比理論更重要,其實學數學的方法很多,但在一二年級最重要的是積累經驗,讓孩子動手。

⑶ 數學家的講解

[編輯本段]1. 歐拉(古)
(Leonhard Euler 公元1707-1783年)也有翻譯為歐勒,18世紀最優秀的數學家,也是歷史上最偉大的數學家之一,被稱為「分析的化身」。
1707年出生在瑞士的巴塞爾(Basel)城,小時候他就特別喜歡數學,不滿10歲就開始自學《代數學》。這本書連他的幾位老師都沒讀過,可小歐拉卻讀得津津有味,遇到不懂的地方,就用筆作個記號,事後再向別人請教。13歲就進巴塞爾大學讀書,這在當時是個奇跡,曾轟動了數學界。小歐拉是這所大學,也是整個瑞士大學校園里年齡最小的學生。在大學里得到當時最有名的數學家微積分權威約翰·伯努利(Johann Bernoulli,1667-1748年)的精心指導,並逐漸與其建立了深厚的友誼。約翰·伯努利後來曾這樣稱贊青出於藍而勝於藍的學生:「我介紹高等分析時,它還是個孩子,而你將他帶大成人。」兩年後的夏天,歐拉獲得巴塞爾大學的學士學位,次年,歐拉又獲得巴塞爾大學的哲學碩士學位。1725年,歐拉開始了他的數學生涯。
歐拉的父親保羅·歐拉(Paul Euler)也是一個數學家,原希望小歐拉學神學,同時教他一點數學.由於小歐拉的才人和異常勤奮的精神,又受到約翰·伯努利的賞識和特殊指導,當他在19歲時寫了一篇關於船桅的論文,獲得巴黎科學院的獎金後,他的父親就不再反對他攻讀數學了.
1725年約翰·伯努利的兒子丹尼爾·伯努利赴俄國,並向沙皇喀德林一世推薦了歐拉,這樣,在1727年5月17日歐拉來到了彼得堡.1733年,年僅26歲的歐拉擔任了彼得堡科學院數學教授.1735年,歐拉解決了一個天文學的難題(計算彗星軌道),這個問題經幾個著名數學家幾個月的努力才得到解決,而歐拉卻用自己發明的方法,三天便完成了.然而過度的工作使他得了眼病,並且不幸右眼失明了,這時他才28歲.1741年歐拉應普魯士彼德烈大帝的邀請,到柏林擔任科學院物理數學所所長,直到1766年,後來在沙皇喀德林二世的誠懇敦聘下重回彼得堡,不料沒有多久,左眼視力衰退,最後完全失明.不幸的事情接踵而來,1771年彼得堡的大火災殃及歐拉住宅,帶病而失明的64歲的歐拉被圍困在大火中,雖然他被別人從火海中救了出來,但他的書房和大量研究成果全部化為灰燼了.
沉重的打擊,仍然沒有使歐拉倒下,他發誓要把損失奪回來.歐拉完全失明以後,雖然生活在黑暗中,但仍然以驚人的毅力與黑暗搏鬥,憑著記憶和心算進行研究,直到逝世,竟達17年之久.
1783年9月18日,在不久前才剛計算完氣球上升定律的歐拉,在興奮中突然停止了呼吸,享年76歲。歐拉生活、工作過的三個國家:瑞士、俄國、德國,都把歐拉作為自己的數學家,為有他而感到驕傲。
歐拉的記憶力和心算能力是罕見的,他能夠復述年青時代筆記的內容,心算並不限於簡單的運算,高等數學一樣可以用心算去完成.有一個例子足以說明他的本領,歐拉的兩個學生把一個復雜的收斂級數的17項加起來,算到第50位數字,兩人相差一個單位,歐拉為了確定究竟誰對,用心算進行全部運算,最後把錯誤找了出來.歐拉在失明的17年中;還解決了使牛頓頭痛的月離問題和很多復雜的分析問題.
歐拉的風格是很高的,拉格朗日是稍後於歐拉的大數學家,從19歲起和歐拉通信,討論等周問題的一般解法,這引起變分法的誕生.等周問題是歐拉多年來苦心考慮的問題,拉格朗日的解法,博得歐拉的熱烈贊揚,1759年10月2日歐拉在回信中盛稱拉格朗日的成就,並謙虛地壓下自己在這方面較不成熟的作品暫不發表,使年青的拉格朗日的工作得以發表和流傳,並贏得巨大的聲譽.他晚年的時候,歐洲所有的數學家都把他當作老師,著名數學家拉普拉斯(Laplace)曾說過:"讀讀歐拉、讀讀歐拉,它是我們大家的老師!" 當歐拉75歲高齡之時,一場突如其來的大火燒掉了他幾乎全部的著述,而神奇的歐拉用了一年的時間口述了所有這些論文並作了修訂。一年以後,1783年9月18日的下午,歐拉為了慶祝他計算氣球上升定律的成功,請朋友們吃飯,那時天王星剛發現不久,歐拉寫出了計算天王星軌道的要領,還和他的孫子逗笑,喝完茶後,突然疾病發作,煙斗從手中落下,口裡喃喃地說:"我要死了",歐拉終於"停止了生命和計算".
歐拉淵博的知識,無窮無盡的創作精力和空前豐富的著作,都是令人驚嘆不已的!他從19歲開始發表論文,直到76歲,半個多世紀寫下了浩如煙海的書籍和論文.可以說歐拉是科學史上最多產的一位傑出的數學家,據統計他那不倦的一生,共寫下了886本書籍和論文(七十餘卷,牛頓全集八卷,高斯全集十二卷),其中分析、代數、數論佔40%,幾何佔18%,物理和力學佔28%,天文學佔11%,彈道學、航海學、建築學等佔3%,彼得堡科學院為了整理他的著作,足足忙碌了四十七年。到今幾乎每一個數學領域都可以看到歐拉的名字,從初等幾何的歐拉線,多面體的歐拉定理,立體解析幾何的歐拉變換公式,四次方程的歐拉解法到數論中的歐拉函數,微分方程的歐拉方程,級數論的歐拉常數,變分學的歐拉方程,復變函數的歐拉公式等等,數也數不清.他對數學分析的貢獻更獨具匠心,《無窮小分析引論》一書便是他劃時代的代表作,當時數學家們稱他為"分析學的化身".
歐拉著作的驚人多產並不是偶然的,他可以在任何不良的環境中工作,他常常抱著孩子在膝上完成論文,也不顧孩子在旁邊喧嘩.他那頑強的毅力和孜孜不倦的治學精神,使他在雙目失明以後, 也沒有停止對數學的研究,在失明後的17年間,他還口述了幾本書和400篇左右的論文.19世紀偉大數學家高斯(Gauss,1777-1855年)曾說:"研究歐拉的著作永遠是了解數學的最好方法."
歐拉的一生,是為數學發展而奮斗的一生,他那傑出的智慧,頑強的毅力,孜孜不倦的奮斗精神和高尚的科學道德,永遠是值得我們學習的.歐拉在數學、物理、天文、建築以至音樂、哲學方面都取得了輝煌的成就。在數學的各個領域,常常見到以歐來命名的公式、定理、和重要常數。課本上常見的如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等,都是他創立並推廣的。歌德巴赫猜想也是在他與歌德巴赫的通信中提出來的。歐拉還首先完成了月球繞地球運動的精確理論,創立了分析力學、剛體力學等力學學科,深化瞭望遠鏡、顯微鏡的設計計算理論。
歐拉一生能取得偉大的成就原因在於:驚人的記憶力;聚精會神,從不受嘈雜和喧鬧的干擾;鎮靜自若,孜孜不倦。
歐拉(L.Euler,1707.4.15-1783.9.18)是瑞士數學家。生於瑞士的巴塞爾(Basel),卒於彼得堡(Petepbypt)。父親保羅·歐拉是位牧師,喜歡數學,所以歐拉從小就受到這方面的熏陶。但父親卻執意讓他攻讀神學,以便將來接他的班。幸運的是,歐拉並沒有走父親為他安排的路。父親曾在巴塞爾大學上過學,與當時著名數學家約翰·伯努利(Johann Bernoulli,1667.8.6-1748.1.1)及雅各布·伯努利(Jacob Bernoulli,1654.12.27-1705.8.16)有幾分情誼。由於這種關系,歐拉結識了約翰的兩個兒子:擅長數學的尼古拉(Nicolaus Bernoulli,1695-1726)及丹尼爾(Daniel Bernoulli,1700.2.9-1782.3.17)兄弟二人,(這二人後來都成為數學家)。他倆經常給小歐拉講生動的數學故事和有趣的數學知識。這些都使歐拉受益匪淺。1720年,由約翰保舉,才13歲的歐拉成了巴塞爾大學的學生,而且約翰精心培育著聰明伶俐的歐拉。當約翰發現課堂上的知識已滿足不了歐拉的求知慾望時,就決定每周六下午單獨給他輔導、答題和授課。約翰的心血沒有白費,在他的嚴格訓練下,歐拉終於成長起來。他17歲的時候,成為巴塞爾有史以來的第一個年輕的碩士,並成為約翰的助手。在約翰的指導下,歐拉從一開始就選擇通過解決實際問題進行數學研究的道路。1726年,19歲的歐拉由於撰寫了《論桅桿配置的船舶問題》而榮獲巴黎科學院的資金。這標志著歐拉的羽毛已豐滿,從此可以展翅飛翔。
歐拉的成長與他這段歷史是分不開的。當然,歐拉的成才還有另一個重要的因素,就是他那驚人的記憶力!,他能背誦前一百個質數的前十次冪,能背誦羅馬詩人維吉爾(Virgil)的史詩Aeneil,能背誦全部的數學公式。直至晚年,他還能復述年輕時的筆記的全部內容。高等數學的計算他可以用心算來完成。
盡管他的天賦很高,但如果沒有約翰的教育,結果也很難想像。由於約翰·伯努利以其豐富的閱歷和對數學發展狀況的深刻的了解,能給歐拉以重要的指點,使歐拉一開始就學習那些雖然難學卻十分必要的書,少走了不少彎路。這段歷史對歐拉的影響極大,以至於歐拉成為大科學家之後仍不忘記育新人,這主要體現在編寫教科書和直接培養有才化的數學工作者,其中包括後來成為大數學家的拉格朗日(J.L.Lagrange,1736.1.25-1813.4.10)。
歐拉本人雖不是教師,但他對教學的影響超過任何人。他身為世界上第一流的學者、教授,肩負著解決高深課題的重擔,但卻能無視"名流"的非議,熱心於數學的普及工作。他編寫的《無窮小分析引論》、《微分法》和《積分法》產生了深遠的影響。有的學者認為,自從1784年以後,初等微積分和高等微積分教科書基本上都抄襲歐拉的書,或者抄襲那些抄襲歐拉的書。歐拉在這方面與其它數學家如高斯(C.F.Gauss,1777.4.30-1855.2.23)、牛頓(I.Newton,1643.1.4-1727.3.31)等都不同,他們所寫的書一是數量少,二是艱澀難明,別人很難讀懂。而歐拉的文字既輕松易懂,堪稱這方面的典範。他從來不壓縮字句,總是津津有味地把他那豐富的思想和廣泛的興趣寫得有聲有色。他用德、俄、英文發表過大量的通俗文章,還編寫過大量中小學教科書。他編寫的初等代數和算術的教科書考慮細致,敘述有條有理。他用許多新的思想的敘述方法,使得這些書既嚴密又易於理解。歐拉最先把對數定義為乘方的逆運算,並且最先發現了對數是無窮多值的。他證明了任一非零實數R有無窮多個對數。歐拉使三角學成為一門系統的科學,他首先用比值來給出三角函數的定義,而在他以前是一直以線段的長作為定義的。歐拉的定義使三角學跳出只研究三角表這個圈子。歐拉對整個三角學作了分析性的研究。在這以前,每個公式僅從圖中推出,大部分以敘述表達。歐拉卻從最初幾個公式解析地推導出了全部三角公式,還獲得了許多新的公式。歐拉用a 、b 、c 表示三角形的三條邊,用A、B、C表示第個邊所對的角,從而使敘述大大地簡化。歐拉得到的著名的公式,又把三角函數與指數函聯結起來。
在普及教育和科研中,歐拉意識到符號的簡化和規則化既有有助於學生的學習,又有助於數學的發展,所以歐拉創立了許多新的符號。如用sin 、cos 等表示三角函數,用 e 表示自然對數的底,用f(x) 表示函數,用 ∑表示求和,用 i表示虛數等。圓周率π雖然不是歐拉首創,但卻是經過歐拉的倡導才得以廣泛流行。而且,歐拉還把e 、π 、i 統一在一個令人叫絕的關系式 中。
歐拉不但重視教育,而且重視人才。當時法國的拉格朗日只有19歲,而歐拉已48歲。拉格朗日與歐拉通信討論"等周問題",歐拉也在研究這個問題。後來拉格朗日獲得成果,歐拉就壓下自己的論文,讓拉格朗日首先發表,使他一舉成名。
歐拉19歲大學畢業時,在瑞士沒有找到合適的工作。1727年春,在巴塞爾他試圖擔任空缺的教研室主任職務,但沒有成功。這時候,俄國的聖彼得堡科院剛建立不久,正在全國各地招聘科學家,廣泛地搜羅人才。已經應聘在彼得堡工作的丹爾·伯努利深知歐拉的才能,因此,他竭力聘請歐拉去俄羅斯。在這種情況下,歐拉離開了自己的祖國。由於丹尼爾的推薦,1727年,歐拉應邀到聖彼得堡做丹尼爾的助手。在聖彼得堡科學院,他順利地獲得了高等數學副教授的職位。1731年,又被委任領導理論物理和實驗物理教研室的工作。1733年,年僅26歲的歐拉接替回瑞士的丹尼爾,成為數學教授及彼得堡科學院數學部的領導人。
在這期間,歐拉勤奮地工作,發表了大量優秀的數學論文,以及其它方面的論文、著作。
古典力學的基礎是牛頓奠定的,而歐拉則是其主要建築師。1736年,歐拉出版了《力學,或解析地敘述運動的理論》,在這里他最早明確地提出質點或粒子的概念,最早研究質點沿任意一曲線運動時的速度,並在有關速度與加速度問題上應用矢量的概念。
同時,他創立了分析力學、剛體力學,研究和發展了彈性理論、振動理論以及材料力學。並且他把振動理論應用到音樂的理論中去,1739年,出版了一部音樂理論的著作。1738年,法國科學院設立了回答熱本質問題徵文的獎金,歐拉的《論火》一文獲獎。在這篇文章中,歐拉把熱本質看成是分子的振動。
歐拉研究問題最鮮明的特點是:他把數學研究之手深入到自然與社會的深層。他不僅是位傑出的數學家,而且也是位理論聯系實際的巨匠,應用數學大師。他喜歡搞特定的具體問題,而不象現代某些數學家那樣,熱衰於搞一般理論。
正因為歐拉所研究的問題都是與當時的生產實際、社會需要和軍事需要等緊密相連,所以歐拉的創造才能才得到了充分發揮,取得了驚人的成就。歐拉在搞科學研究的同時,還把數學應用到實際之中,為俄國政府解決了很多科學難題,為社會作出了重要的貢獻。如菲諾運河的改造方案,宮延排水設施的設計審定,為學校編寫教材,幫助政府測繪地圖;在度量衡委員會工作時,參加研究了各種衡器的准確度。另外,他還為科學院機關刊物寫評論並長期主持委員會工作。他不但為科學院做大量工作,而且擠出時間在大學里講課,作公開演講,編寫科普文章,為氣象部門提供天文數據,協助建築單位進行設計結構的力學分析。1735年,歐拉著手解決一個天文學難題——計算彗星的軌跡(這個問題需經幾個著名的數學家幾個月的努力才能完成)。由於歐拉使用了自己發明的新方法,只用了三天的時間。但三天持續不斷的勞累也使歐拉積勞成疾,疾病使年僅28歲的歐拉右眼失明。這樣的災難並沒有使歐拉屈服,他仍然醉心於科學事業,忘我地工作。但由於俄國的統治集團長期的權力之爭,日益影響到了歐拉的工作,使歐拉很苦悶。事也湊巧,普魯士國王腓特烈大帝(Frederick the Great,1740-1786在位)得知歐拉的處境後,便邀請歐拉去柏林。盡管歐拉十分熱愛自己的第二故鄉(在這里他普工作生活了14年),但為了科學事業,他還是在1741年暫時離開了聖彼得堡科學院,到柏林科學院任職,任數學物理所所長。1759年成為柏林科學院的領導人。在柏林工作期間,他並沒有忘記俄羅斯,他通過書信來指導他在俄羅斯的學生,並把自己的科學著作寄到俄羅斯,對俄羅斯科學事業的發展起了很大作用。
他在柏林工作期間,將數學成功地應用於其它科學技術領域,寫出了幾百篇論文,他一生中許多重大的成果都是這期間得到的。如:有巨大影響的《無窮小分析引論》、《微分學原理》,既是這期間出版的。此外,他研究了天文學,並與達朗貝爾(I.L.R.D'Alembert,1717.11.16-1783.10.29)、拉格朗日一起成為天體力學的創立者,發表了《行星和彗星的運動理論》、《月球運動理論》、《日蝕的計算》等著作。在歐拉時代還不分什麼純粹數學和應用數學,對他來說,整個物理世界正是他數學方法的用武之地。他研究了流體的運動性質,建立了理想流體運動的基本微分方程,發表了《流體運動原理》和《流體運動的一般原理》等論文,成為流體力學的創始人。他不但把數學應用於自然科學,而且還把某一學科所得到的成果應用於另一學科。比如,他把自己所建立的理想流體運動的基本方程用於人體血液的流動,從而在生物學上添上了他的貢獻,又以流體力學、潮汐理論為基礎,豐富和發展了船舶設計製造及航海理論,出版了《航海科學》一書,並以一篇《論船舶的左右及前後搖晃》的論文,榮獲巴黎科學院獎金。不僅如此,他還為普魯士王國解決了大量社會實際問題。1760年到1762年間,歐拉應親王的邀請為夏洛特公主函授哲學、物理學、宇宙學、神學、化理學、音樂等,這些通信充分體現了歐拉淵博的知識、極高的文學修養、哲學修養。後來這些通信整理成《致一位德國公主的信》,1768年分三卷出版,世界各國譯本風靡,一時傳為佳話。
自從1741年歐拉離開彼得堡以後,俄國的政局一直不好,政權幾次更迭,最後落入葉卡捷林娜二世的手中,她吸取了以往的教訓,開始致力於文治武功。她一面與伏爾泰、狄德羅等法國啟蒙學者通信,一面又四方招聘有影響的科學家去彼得堡科學院任職。歐拉自然成了她主要聘請的對象。1766年,年已花甲的歐拉應邀回到彼得堡,這次俄國為他准備了優越的工作條件。
這時歐拉的科學研究工作已經是碩果累累,思想也已經成熟。除了一些專題還需繼續研究外,他希望能在晚年對過去的成就作系統的總結,出版幾部高質量的著作。然而,厄運再次向他襲來。由於俄羅斯氣候嚴寒,以及他工作的勞累,歐拉的左眼又失明了,從此歐拉陷入伸手不見五指的黑暗之中。但歐拉是堅強的,他用口授、別人記錄的方法堅持寫作。他先集中精力撰寫了《微積分原理》一書,在這部三卷本巨著中,歐拉系統地闡述了微積分發明以來的所有積分學的成就,其中充滿了歐拉精闢的見解。1768年,《積分學原理》第一卷在聖彼得堡出版。1770年第三卷出版。同年,他又口述寫成《代數學完整引論》,有俄文、德文、法文版,成為歐洲幾代人的教科書,正當歐拉在黑暗中搏鬥時,厄運又一次向他襲來。1771年,聖彼得堡一場大火,秧及歐拉的住宅,把歐拉包圍在大火中。在這危急的時刻,是一位僕人冒著生命危險把歐拉從大火中背出來。歐拉雖然倖免於難,可他的藏書及大量的研究成果都化為灰燼。種種磨難,並沒有把歐拉搞垮。大火以後他立即投入到新的創作之中。資料被焚,他又雙目失明,在這種情況下,他完全憑著堅強的意志和驚人的毅力,回憶所作過的研究。歐拉的記憶力也確實罕見,他能夠完整地背誦出幾十年前的筆記內容,數學公式當然更能背誦如流。歐拉總是把推理過程想得很細,然後口授,由他的長子記錄。他用這種方法又發表了論文400多篇以及多部專著,這幾乎占他全部著作的半數以上。1774年,他把自己多年來研究變分問題所取得的成果集中發表一本書《尋求具有某種極大或極小性質的曲線的技巧》中。從而創立了一個新的分支——變分法。另外,歐拉對天文學中的"三體問題"月球運動及攝運問題進行了研究。後來,他解決了牛頓沒有解決的月球運動問題,首創了月球繞地球運動地精確理論。為了更好地進行天文觀測,他曾研究了光學,天文望遠鏡和顯微鏡。研究了光通過各種介質的現象和有關的分色效應,提出了復雜的物鏡原理,發表過有關光學儀器的專著,對望遠鏡和顯微鏡的設計計算理論做出過開創性的貢獻,在1771年他又發表了總結性著作《屈光學》。歐拉從19歲開始寫作,直到逝世,留下了浩如煙海的論文、著作,甚至在他死後,他留下的許多手稿還豐富了後47年的聖彼得堡科學院學報。就科研成果方面來說,歐拉是數學史上或者說是自然科學史上首屈一指的。
作為這樣一位科學巨人,在生活中他並不是一個呆板的人。他性情溫和,性格開朗,也喜歡交際。歐拉結過兩次婚,有13個孩子。他熱愛家庭的生活,常常和孩子們一起做科學游戲,講故事。
歐拉旺盛的精力和鑽研精神一直堅持到生命的最後一刻。1783年9月18日下午,歐拉一邊和小孫女逗著玩,一邊思考著計算天王星的軌跡,突然,他從椅子上滑下來,嘴裡輕聲說:"我死了"。一位科學巨匠就這樣停止了生命。
歷史上,能跟歐拉相比的人的確不多,也有的歷史學家把歐拉和阿基米德、牛頓、高斯列為有史以來貢獻最大的四位數學家,依據是他們都有一個共同點,就是在創建純粹理論的同時,還應用這些數學工具去解決大量天文、物理和力學等方面的實際問題,他們的工作是跨學科的,他們不斷地從實踐中吸取豐富的營養,但又不滿足於具體問題的解決,而是把宇宙看作是一個有機的整體,力圖揭示它的奧秘和內在規律。
由於歐拉出色的工作,後世的著名數學家都極度推崇歐拉。大數學家拉普拉斯(P.S.M.de Laplace,1749.3.23-1827.3.5)普說過:"讀讀歐拉,這是我們一切人的老師。"被譽為數學王子地高斯也普說過:"對於歐拉工作的研究,將仍舊是對於數學的不同范圍的最好的學校,並且沒有別的可以替代它"。
歐拉的對數學各個領域的貢獻
歐拉的結果分散在數學的各個領域里,幾乎在數學每個領域都可以看見歐拉的名字,以歐拉命名的定理、公式、函數等不計其數,其中有:
Euler公式
Euler常數
Euler函數
Euler定理
2,歐拉(現)
( G.A.Olah ) 1927~
美國
獎項:化學獎
獲獎時間:1994年
獲獎理由:
他發現了使碳陽離子保持穩定的方法,在碳正離子化學方面的研究

⑷ 初中數學講課視頻,誰的好

《最新最強數學老師課程崔莉-數學初中全套教學視頻》網路網盤資源免費下載

鏈接: https://pan..com/s/1o4dXcvHwDJ0leS0FhOostQ

?pwd=vtxk 提取碼: vtxk

最新最強數學老師課程崔莉-數學初中全套教學視頻|22【沖刺初三】之_中考贏在起跑線|21【沖刺初三】之_三輪中考總復習|20【沖刺初三】之_中考數學重點難點大串講|19【沖刺初三】之_圓與相似三角形考點精解|18【沖刺初三】之_系統串講二次函數|17【沖刺初三】_之_二次根式|16【關鍵初二】之_精解分式、函數與勾股定理|15【關鍵初二】之_探尋神奇三角形|14【關鍵初二】之_三角形與實數|13【關鍵初二】之_考點專項突破|12【關鍵初二】之_考點各個擊破|11【關鍵初二】之_幾何考點精解|10【關鍵初二】之_溫故知新篇|09【關鍵初二】之_系統剖析一次函數與整式

⑸ 張老師很有教學經驗 每堂課都講許多數學中的難題

張老師很有教學經驗,他(她) 每堂課都講許多數學中的難題 。
給個最佳答案哦o(∩_∩)o...

⑹ 怎樣用數學知識贊美數學老師

用數學知識贊美數學老師,我們的數學老師就是一個方程式,未知數總能得到求解,我們的數學老師是一個,數軸,正數負數都是坐標當中的,數學老師就是一個對數,總有相應的數值和它對應

⑺ 名思老師告訴你小學數學學習究竟該怎樣學

怎樣學好小學數學的五大技巧

1.學會主動預習 新知識在未講解之前,認真閱讀教材,養成主動預習的習慣,是獲得數學知識的重要手段。因此,培養自學能力,在老師的引導下學會看書,帶著老師精心設計的思考題去預習。如自學例題時,要弄清例題講的什麼內容,告訴了哪些條件,求什麼,書上怎麼解答的,為什麼要這樣解答,還有沒有新的解法,解題步驟是怎樣的。抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。

2.在老師的引導下掌握思考問題的方法 一些學生對公式、性質、法則等背的挺熟,但遇到實際問題時,卻又無從下手,不知如何應用所學的知識去解答問題。如有這樣一道題讓學生解「把一個長方體的高去掉2_厘米後成為一個正方體,他的表面積減少了48平方厘米,這個正方體的體積是多少?」同學們對求體積的公式雖記得很熟,但由於該題涉及知識面廣,許多同學理不出解題思路,這需要學生在老師的引導下逐漸掌握解題時的思考方法。這道題從單位上講,涉及到長度單位、面積單位;從圖形上講,涉及到長方形、正方形、長方體、正方體;從圖形變化關系講:長方形→正方形;從思維推理上講:長方體→減少一部分底面是正方形的長方體→減少部分四個面面積相等→求一個面的面積→求出長方形的長(即正方形的一個棱長)→正方體的體積,經老師啟發,學生分析後,學生根據其思路(可畫出圖形)進行解答。有的學生很快解答出來:設原長方體的底面長為X,則2X×4=48得:X=6(即正方體的棱長),這樣得出正方體的體積為:6×6×6=216(立方厘米)。

3.及時總結解題規律 解答數學問題總的講是有規律可循的。在解題時,要注意總結解題規律,在解決每一道練習題後,要注意回顧以下問題:

(1)本題最重要的特點是什麼?

(2)解本題用了哪些基本知識與基本圖形?

(3)本題你是怎樣觀察、聯想、變換來實現轉化的?

(4)解本題用了哪些數學思想、方法?

(5)解本題最關鍵的一步在那裡?

(6)你做過與本題類似的題目嗎?在解法、思路上有什麼異同?

(7)本題你能發現幾種解法?其中哪一種最優?那種解法是特殊技巧?你能總結在什麼情況下採用嗎?把這一連串的問題貫穿於解題各環節中,逐步完善,持之以恆,學生解題的心理穩定性和應變能力就可以不斷提高,思維能力就會得到鍛煉和發展。

4. 拓寬解題思路 在教學中老師會經常給學生設置疑點,提出問題,啟發學生多思多想,這時學生要積極思考,拓寬思路,以使思維的廣闊性得到較好的發展。如:修一條長2400米的水渠,5天修了它的20%,照這樣計算剩下的還需幾天修完?根據工作總量、工作效率、工作時間三者的關系,學生可以列出下列算式:(1)2400÷(2400×20%÷5)-5=20(天)(2)2400×(1-20%)÷(2400×20%÷)=20(天)。教師啟發學生,提問:「修完它的20%用5天,還剩下(1-20%要用多少天修完呢?」學生很快想到倍比的方法列出:(3)5×(1-20%)÷20%=20(天)。如果從「已知一個數的幾分之幾是多少,求這個數」的方法去思考,又可得出下列解法:5÷20%-5=20(天)。再啟發學生,能否用比例知識解答?學生又會想出:(6)20%∶(1-20%)=5∶X(設剩下的用X天修完)。這樣啟發學生多思,溝通了知識間的縱橫關系,變換解題方法,拓寬學生的解題思路,培養學生思維的靈活性。

5. 善於質疑問難 學啟於思,思源於疑。學生的積極思維往往是從有疑開始的。學會發現和提出問題是學會創新的關鍵。著名教育家顧明遠說:「不會提問的學生不是一個好學生。」現代教育的學生觀要求:「學生能獨立思考,有提出問題的能力。」培養創新意識、學會學習,應從學會提出疑問開始。如學習「角的度量」,認識量角器時,認真觀察量角器,問自己:「我發現了什麼?我有什麼問題可以提?」通過觀察、思考,你可能會說說:「為什麼有兩個半圓的刻度呢?」「內外兩個刻度有什麼用處?」,「只有一個刻度會不會比兩個刻度更方便量呢?」,「為什麼要有中心的一點呢?」等等,不同的學生會提出各種不同的看法。在度量形狀如「V」時,你可能會想到不必要用其中一條邊與量角器零刻度線重合的辦法。學習中要善於發現問題,敢於提出問題,即增加主體意識,敢於發表自己的看法、見解,激發創造慾望,始終保持高昂的學習情緒。