當前位置:首頁 » 基礎知識 » 知識大集結數學
擴展閱讀
怎麼在抖音里上傳歌詞 2025-01-19 23:02:21
動漫有哪些神 2025-01-19 23:02:15

知識大集結數學

發布時間: 2022-07-14 04:57:41

『壹』 高中數學知識總結

高中數學知識點總結
1. 對於集合,一定要抓住集合的代表元素,及元素的「確定性、互異性、無序性」。

中元素各表示什麼?

注重藉助於數軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。

3. 注意下列性質:

(3)德摩根定律:

4. 你會用補集思想解決問題嗎?(排除法、間接法)

的取值范圍。

6. 命題的四種形式及其相互關系是什麼?
(互為逆否關系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
7. 對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?
(一對一,多對一,允許B中有元素無原象。)
8. 函數的三要素是什麼?如何比較兩個函數是否相同?
(定義域、對應法則、值域)
9. 求函數的定義域有哪些常見類型?

10. 如何求復合函數的定義域?

義域是_____________。

11. 求一個函數的解析式或一個函數的反函數時,註明函數的定義域了嗎?

12. 反函數存在的條件是什麼?
(一一對應函數)
求反函數的步驟掌握了嗎?
(①反解x;②互換x、y;③註明定義域)

13. 反函數的性質有哪些?
①互為反函數的圖象關於直線y=x對稱;
②保存了原來函數的單調性、奇函數性;

14. 如何用定義證明函數的單調性?
(取值、作差、判正負)
如何判斷復合函數的單調性?

∴……)
15. 如何利用導數判斷函數的單調性?

值是( )
A. 0 B. 1 C. 2 D. 3

∴a的最大值為3)
16. 函數f(x)具有奇偶性的必要(非充分)條件是什麼?
(f(x)定義域關於原點對稱)

注意如下結論:
(1)在公共定義域內:兩個奇函數的乘積是偶函數;兩個偶函數的乘積是偶函數;一個偶函數與奇函數的乘積是奇函數。

17. 你熟悉周期函數的定義嗎?

函數,T是一個周期。)

如:

18. 你掌握常用的圖象變換了嗎?

注意如下「翻折」變換:

19. 你熟練掌握常用函數的圖象和性質了嗎?

的雙曲線。

應用:①「三個二次」(二次函數、二次方程、二次不等式)的關系——二次方程

②求閉區間[m,n]上的最值。
③求區間定(動),對稱軸動(定)的最值問題。
④一元二次方程根的分布問題。

由圖象記性質! (注意底數的限定!)

利用它的單調性求最值與利用均值不等式求最值的區別是什麼?

20. 你在基本運算上常出現錯誤嗎?

21. 如何解抽象函數問題?
(賦值法、結構變換法)

22. 掌握求函數值域的常用方法了嗎?
(二次函數法(配方法),反函數法,換元法,均值定理法,判別式法,利用函數單調性法,導數法等。)
如求下列函數的最值:

23. 你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?

24. 熟記三角函數的定義,單位圓中三角函數線的定義

25. 你能迅速畫出正弦、餘弦、正切函數的圖象嗎?並由圖象寫出單調區間、對稱點、對稱軸嗎?

(x,y)作圖象。

27. 在三角函數中求一個角時要注意兩個方面——先求出某一個三角函數值,再判定角的范圍。

28. 在解含有正、餘弦函數的問題時,你注意(到)運用函數的有界性了嗎?

29. 熟練掌握三角函數圖象變換了嗎?
(平移變換、伸縮變換)
平移公式:

圖象?

30. 熟練掌握同角三角函數關系和誘導公式了嗎?

「奇」、「偶」指k取奇、偶數。

A. 正值或負值 B. 負值 C. 非負值 D. 正值

31. 熟練掌握兩角和、差、倍、降冪公式及其逆向應用了嗎?
理解公式之間的聯系:

應用以上公式對三角函數式化簡。(化簡要求:項數最少、函數種類最少,分母中不含三角函數,能求值,盡可能求值。)
具體方法:

(2)名的變換:化弦或化切
(3)次數的變換:升、降冪公式
(4)形的變換:統一函數形式,注意運用代數運算。

32. 正、餘弦定理的各種表達形式你還記得嗎?如何實現邊、角轉化,而解斜三角形?

(應用:已知兩邊一夾角求第三邊;已知三邊求角。)

33. 用反三角函數表示角時要注意角的范圍。

34. 不等式的性質有哪些?

答案:C
35. 利用均值不等式:

值?(一正、二定、三相等)
注意如下結論:

36. 不等式證明的基本方法都掌握了嗎?
(比較法、分析法、綜合法、數學歸納法等)
並注意簡單放縮法的應用。

(移項通分,分子分母因式分解,x的系數變為1,穿軸法解得結果。)
38. 用「穿軸法」解高次不等式——「奇穿,偶切」,從最大根的右上方開始

39. 解含有參數的不等式要注意對字母參數的討論

40. 對含有兩個絕對值的不等式如何去解?
(找零點,分段討論,去掉絕對值符號,最後取各段的並集。)

證明:

(按不等號方向放縮)
42. 不等式恆成立問題,常用的處理方式是什麼?(可轉化為最值問題,或「△」問題)

43. 等差數列的定義與性質

0的二次函數)

項,即:

44. 等比數列的定義與性質

46. 你熟悉求數列通項公式的常用方法嗎?
例如:(1)求差(商)法

解:

[練習]

(2)疊乘法

解:

(3)等差型遞推公式

[練習]

(4)等比型遞推公式

[練習]

(5)倒數法

47. 你熟悉求數列前n項和的常用方法嗎?
例如:(1)裂項法:把數列各項拆成兩項或多項之和,使之出現成對互為相反數的項。

解:

[練習]

(2)錯位相減法:

(3)倒序相加法:把數列的各項順序倒寫,再與原來順序的數列相加。

[練習]

48. 你知道儲蓄、貸款問題嗎?
△零存整取儲蓄(單利)本利和計算模型:
若每期存入本金p元,每期利率為r,n期後,本利和為:

△若按復利,如貸款問題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息的借款種類)
若貸款(向銀行借款)p元,採用分期等額還款方式,從借款日算起,一期(如一年)後為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復利),那麼每期應還x元,滿足

p——貸款數,r——利率,n——還款期數
49. 解排列、組合問題的依據是:分類相加,分步相乘,有序排列,無序組合。

(2)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一

(3)組合:從n個不同元素中任取m(m≤n)個元素並組成一組,叫做從n個不

50. 解排列與組合問題的規律是:
相鄰問題捆綁法;相間隔問題插空法;定位問題優先法;多元問題分類法;至多至少問題間接法;相同元素分組可採用隔板法,數量不大時可以逐一排出結果。
如:學號為1,2,3,4的四名學生的考試成績

則這四位同學考試成績的所有可能情況是( )
A. 24 B. 15 C. 12 D. 10
解析:可分成兩類:

(2)中間兩個分數相等

相同兩數分別取90,91,92,對應的排列可以數出來,分別有3,4,3種,∴有10種。
∴共有5+10=15(種)情況
51. 二項式定理

性質:

(3)最值:n為偶數時,n+1為奇數,中間一項的二項式系數最大且為第

表示)

52. 你對隨機事件之間的關系熟悉嗎?

的和(並)。

(5)互斥事件(互不相容事件):「A與B不能同時發生」叫做A、B互斥。

(6)對立事件(互逆事件):

(7)獨立事件:A發生與否對B發生的概率沒有影響,這樣的兩個事件叫做相互獨立事件。

53. 對某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常採用排列組合的方法,即

(5)如果在一次試驗中A發生的概率是p,那麼在n次獨立重復試驗中A恰好發生

如:設10件產品中有4件次品,6件正品,求下列事件的概率。
(1)從中任取2件都是次品;

(2)從中任取5件恰有2件次品;

(3)從中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品為「恰有2次品」和「三件都是次品」

(4)從中依次取5件恰有2件次品。
解析:∵一件一件抽取(有順序)

分清(1)、(2)是組合問題,(3)是可重復排列問題,(4)是無重復排列問題。
54. 抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數表法)常常用於總體個數較少時,它的特徵是從總體中逐個抽取;系統抽樣,常用於總體個數較多時,它的主要特徵是均衡成若幹部分,每部分只取一個;分層抽樣,主要特徵是分層按比例抽樣,主要用於總體中有明顯差異,它們的共同特徵是每個個體被抽到的概率相等,體現了抽樣的客觀性和平等性。
55. 對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。
要熟悉樣本頻率直方圖的作法:

(2)決定組距和組數;
(3)決定分點;
(4)列頻率分布表;
(5)畫頻率直方圖。

如:從10名女生與5名男生中選6名學生參加比賽,如果按性別分層隨機抽樣,則組成此參賽隊的概率為____________。

56. 你對向量的有關概念清楚嗎?
(1)向量——既有大小又有方向的量。

在此規定下向量可以在平面(或空間)平行移動而不改變。
(6)並線向量(平行向量)——方向相同或相反的向量。
規定零向量與任意向量平行。

(7)向量的加、減法如圖:

(8)平面向量基本定理(向量的分解定理)

的一組基底。
(9)向量的坐標表示

表示。

57. 平面向量的數量積

數量積的幾何意義:

(2)數量積的運演算法則

[練習]

答案:

答案:2

答案:
58. 線段的定比分點

※. 你能分清三角形的重心、垂心、外心、內心及其性質嗎?
59. 立體幾何中平行、垂直關系證明的思路清楚嗎?
平行垂直的證明主要利用線面關系的轉化:

線面平行的判定:

線面平行的性質:

三垂線定理(及逆定理):

線面垂直:

面面垂直:

60. 三類角的定義及求法
(1)異面直線所成的角θ,0°<θ≤90°

(2)直線與平面所成的角θ,0°≤θ≤90°

(三垂線定理法:A∈α作或證AB⊥β於B,作BO⊥棱於O,連AO,則AO⊥棱l,∴∠AOB為所求。)
三類角的求法:
①找出或作出有關的角。
②證明其符合定義,並指出所求作的角。
③計算大小(解直角三角形,或用餘弦定理)。
[練習]
(1)如圖,OA為α的斜線OB為其在α內射影,OC為α內過O點任一直線。

(2)如圖,正四稜柱ABCD—A1B1C1D1中對角線BD1=8,BD1與側面B1BCC1所成的為30°。
①求BD1和底面ABCD所成的角;
②求異面直線BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。

(3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。

(∵AB∥DC,P為面PAB與面PCD的公共點,作PF∥AB,則PF為面PCD與面PAB的交線……)
61. 空間有幾種距離?如何求距離?
點與點,點與線,點與面,線與線,線與面,面與面間距離。
將空間距離轉化為兩點的距離,構造三角形,解三角形求線段的長(如:三垂線定理法,或者用等積轉化法)。
如:正方形ABCD—A1B1C1D1中,棱長為a,則:
(1)點C到面AB1C1的距離為___________;
(2)點B到面ACB1的距離為____________;
(3)直線A1D1到面AB1C1的距離為____________;
(4)面AB1C與面A1DC1的距離為____________;
(5)點B到直線A1C1的距離為_____________。

62. 你是否准確理解正稜柱、正棱錐的定義並掌握它們的性質?
正稜柱——底面為正多邊形的直稜柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

正棱錐的計算集中在四個直角三角形中:

它們各包含哪些元素?

63. 球有哪些性質?

(2)球面上兩點的距離是經過這兩點的大圓的劣弧長。為此,要找球心角!
(3)如圖,θ為緯度角,它是線面成角;α為經度角,它是面面成角。

(5)球內接長方體的對角線是球的直徑。正四面體的外接球半徑R與內切球半徑r之比為R:r=3:1。

積為( )

答案:A
64. 熟記下列公式了嗎?

(2)直線方程:

65. 如何判斷兩直線平行、垂直?

66. 怎樣判斷直線l與圓C的位置關系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的「垂徑定理」。
67. 怎樣判斷直線與圓錐曲線的位置?

68. 分清圓錐曲線的定義

70. 在圓錐曲線與直線聯立求解時,消元後得到的方程,要注意其二次項系數是否為零?△≥0的限制。(求交點,弦長,中點,斜率,對稱存在性問題都在△≥0下進行。)

71. 會用定義求圓錐曲線的焦半徑嗎?
如:

通徑是拋物線的所有焦點弦中最短者;以焦點弦為直徑的圓與准線相切。
72. 有關中點弦問題可考慮用「代點法」。

答案:
73. 如何求解「對稱」問題?
(1)證明曲線C:F(x,y)=0關於點M(a,b)成中心對稱,設A(x,y)為曲線C上任意一點,設A'(x',y')為A關於點M的對稱點。

75. 求軌跡方程的常用方法有哪些?注意討論范圍。
(直接法、定義法、轉移法、參數法)
76. 對線性規劃問題:作出可行域,作出以目標函數為截距的直線,在可行域內平移直線,求出目標函數的最值。

『貳』 小學數學升學奪冠知識大集結第147頁和148,的某些答案,題目如下

1,5x+60=5*60 x=48 距離中點30千米,說明快車比慢車多走了60千米
2,水的底面積變成了π*5^2-8*8,用水的體積除以這個底面積就得到了放入鐵塊後水面的高度,即
[(π * 5^2 * 8) / (π*5^2-8*8)] - 8,自己算下,
ok?

『叄』 知識大集結數學答案(平面與圖形)

不如直接搜一下,進入
知識大集結
官網

『肆』 高中數學知識點總結

《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載

鏈接:

提取碼: i8i2

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

『伍』 小學數學知識點總結(全部)

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

『陸』 小學數學知識大集結例題內容

1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數

小學數學圖形計算公式
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3

總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)

植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數

相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)

『柒』 關於數學的知識有哪些

如下:

1、數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。

2、數學在人類歷史發展和社會生活中發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。

3、數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。

4、數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等。數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展.數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標。雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用。

『捌』 集合數學知識點是什麼

集合數學知識點如下:

1、集合的表示方法:常用的有列舉法、描述法和圖文法。

2、並集:A∪B={x| x∈A或x∈B}。

3、有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

4、描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。

5、集合中的元素必須是確定的。即確定了一個集合,任何一個元素是不是這個集合的元素也就確定了。

『玖』 小學數學升學奪冠知識大集結的介紹

《小學數學升學奪冠知識大集結》不同於市場上常見的內容分散,單一的教輔讀物,它是多位特高級教師在長期的教學實踐中精心搜集、整理並不斷補充、不斷完善而成的學科寶典。《小學數學升學奪冠知識大集結》以適中的篇幅,通過整理、歸類等科學有效的方法,濃縮了全國各地不同版本的課本、讀本中的知識精華,網羅課內外常用必備的相關資料,並加以精練、實用、清晰、全面的方式呈現,使廣大小學生在較短的復習、應考時間內,對重、難知識點掌握得更加牢固,理解得更加透徹。尤其是書中精選了用以開闊學生視野、銜接初中學習的課外拓展知識,涉及面廣,信息量大,內容豐富,查閱方便,具有較高的使用價值,適合不同層次學生的學習需求。

『拾』 高中數學集合知識點總結

一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
①.元素的確定性; ②.元素的互異性; ③.元素的無序性
說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
4、集合的表示:{ … } 如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員}B={12345}
2.集合的表示方法:列舉法與描述法。
注意啊:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
關於「屬於」的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 a∈A ,相反,a不屬於集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}
二、集合間的基本關系
1.「包含」關系子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B或集合B不包含集合A記作A B或B A
2. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
3.「相等」關系(5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-11} 「元素相同」
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
① 任何一個集合是它本身的子集。A?A
②真子集:如果A?B且A? B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 A?B B?C 那麼 A?C
④ 如果A?B 同時 B?A 那麼A=B
三、集合的運算
1、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做AB的並集。記作:A∪B(讀作」A並B」),即A∪B={x|x∈A,或x∈B}.
2.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合叫做AB的交集.
記作A∩B(讀作」A交B」),即A∩B={x|x∈A,且x∈B}.
3、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作: CSA 即 CSA ={x ? x?S且 x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U
4、交集與並集的性質:A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A
A∪φ= A A∪B = B∪A

同學你好,如果問題已解決,記得右上角採納哦~~~您的採納是對我的肯定~謝謝哦